INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 03 STOCKHOLM, AUGUST 19-21, 2003

EFFICIENT SUPPORT FOR THE PRODUCT DEVELOPMENT PROCESS —
COMPUTER-BASED METHOD-TOOLS FOR THE CONCEPTUAL PHASE

Walter, S., Sauer, T., Weiss, S., Birkhofer, H.

Abstract

This paper presents an approach to support the application of product development methods
with a software-tool. The system is intended to support both the designer in practice and the
student at the university.

In order to keep the system simple a special software-tool should not be generated for each
method. Rather, the methods have to be described and structured in such a way that
elementary fragments can be separated. To achieve an overall value it must be possible to
create more than just one or a few method-tools from these elementary fragments.

Keywords: computer-aided learning, knowledge-based engineering, knowledge-based systems

1 Introduction

In times of fast changing global markets, business companies need high dynamics and
flexibility in developing new products.

In actual and future product development, especially in highly competitive markets, there are
two basic problems: charges increase progressively in the developmental period while the
time-to-market simultaneously decreases. Products which yesterday seemed to have potential
in becoming market leaders may be antiquated today. That’s why business companies sorely
need efficient method application and software-tools that allow products to be developed
more quickly.

2 Actual application of product development methods

Although the positive influences of method-application in product development projects are
observed, there are a few points of criticism. Partially complex and less intuitive proceedings
in methods may strain the patience of the users or maybe even frustrate them.

Furthermore, there is nearly no chance of reconstructing which course a project has taken
when no methods have been applied. These may be some causes for the slight range of
method application. It could also be due to too little experience or bad experiences with an
incorrect method-application or the application of an inapt method.

Often, the benefits of documentation are not evident to the user. Only when the results of a
method application are used in the following steps does the user recognize the benefits. The
documentation that accompanies the method application makes sense to the user only when it
is used later. Documentation without multiple usage is exactly what it seems to the user to be
— a waste of time.

There are some further reasons for the slight use of methods:

In contrast to students, designers in industry have a certain level of experience and their own
specific problem-solving behaviors. Foreign and different behaviors are not always welcome
to them. [2]

In addition, many more causes of problems in method application are to be found in [7]:
Changed circumstances in product development, lack of cognition concerning aims, limits
and possibilities of methods and consequential errors, inadequate customized methods
concerning specific circumstances or even the absence of schooling.

Due to that and the fact that an objective cost-benefit analysis is hardly possible, the designer
develops a doubtful attitude towards method applications. [7]

3 Approach for improvement
The point is to support the application of product development methods.

Based upon the experiences with ,thekey to innovation’ [4], the department of product
development and machine elements (pmd) at the Darmstadt University of Technology has
endeavored to generate a system which is both an application-system for daily use in industry
projects and a teaching- and learning-system for product development education at
universities: this system is known as pinngate.

3.1 Components of pinngate
The complete pinngate system will contain the following components:

Knowledge-base which provides concrete solutions at different levels of product
development. The solutions are extensively described in order to enable easy use.

Teaching- and learning-system based on modularized product development knowledge to
fulfill specific user needs. The contents of product development knowledge are
modularized in different granularity and integrated into a knowledge network. [1]

Product development method-tool(s) which will be ready to use in different situations.
These specific situations could be a designer, who wants to solve an actual design task, or
a product development method used in education, that shall be explained by
demonstrating the method-tool.

Navigator which supports the user in finding his way within the system.

The individual components team up over interfaces. The system shares the redundance-free
stored information and data. Method-tools, providing background knowledge to solve design
tasks and a knowledge-base to work with are given to the users.

The persistent usage of already existing data (knowledge-base), edited data and newly
generated data reduces the documentation effort mentioned above. The data that is necessary
for the method application shall be provided, prepared and arranged by the system. Newly
generated data will be saved and provided for following steps.

3.2 Software-tool for evaluation

As a first step, a software-tool with which one can evaluate solutions for given functions was
created. This prototypical tool for the evaluation method is structured in a process-related
way. The software-tool reproduces the designers’ proceeding in the following steps:

- first, the user obtains the (existing) list of requirements from which he can deduce
evaluation criteria and edit and/or complete them

- then, the user can evaluate (existing) possible solutions in respect to the assessed
evaluation criteria

- finally, the user can display the results of the evaluation in different ways (e. g. strength

[FFlEvaluation tool i _ ol x|
S 2k
Deduce evaluation criteria | Evallste solutions It Show Results 1
istof
[TNo[TudGrouping_ [Parameter Optimurn [Tergetvalie Spoiltvalus lickle |Date _|ID | Project
[>]1|BF [Transport_|Gewicht =50 0 [<=300 o 5092002
[z [BF [Nuteung 40 bis 85 ‘C_[-25bis35 e 8032002
6F [Nutzung +15 i 6092002
F [Nutzung__|AufGsung <= 0,001 E 26092002
F [E <50 £ [<-200 € 2
utzung |Dampfung]]
F [Nuteung iesswertbilduncy . e =
8_|FF [Montage | Qualitétskontrolle [FAEvaluation tool _lof x|
*
@] kY
s
Deduce evalualion citeria T Evaluate solutions| 1 Show Fesufts 1
- Solutionto eval
Description Parameters and values
Parameter Value
Accept Agreptall Messhereict h +=107]
Auflisung 0,001
20-+85°C|
o] Parameter 775 1 S O\ | 9= SO | e ey <ol
‘2 Gewicht - >‘g”b” = [Evaluation tool I =1 5]
S0 bis i
3 [Messhersich s T ()‘
4 [Aulssung (Y] E"C‘l -@
5 w5300 i
¥ Deduce evaluation criteria T Evaluste solutions T Show Results 1
Strength diagramm 1 Profile oftarget values: i (Pasition in evaluation schema)
1
///
S0l 03
Solutior
; 08
Type: [No: [T M 4]) L]
07
EC: [Gewicht
Points [y u
o[> 400 06 .
1] <= 400 /
3l <= 300 =Lssung 11
m 05
<150 = Lssung 12
_rn
H = Liisung 13
completely evalusted B /
03 -
02
01 =
/
0
0 o 02 03 04 05 06 07 08 09 1

Figure 1 Screenshots of the evaluation-prototype

The problem is that this prototypical software (Figure 1), in the latest version, acts as one
independent software-tool. It may be supplied with external rendered data (e.g. list of
requirements) and is able to handle and analyze these data and to show the results.

But in the end it should not be the intention to create an extra software-tool for each product
development method, which categorically distinguishes how each method is handled. The
objective should be instead to create a flexible software-tool that is able to realize different
method-applications with similar handling.

4 Approach for the transfer of methods into a flexible software-tool

The aim is to implement product development methods into software-tools and to do that,
above all, with as little expense as possible. To reach that aim the methods should be
structured or even standardly described. This would mean that no product development
method would have to be transferred to an extra software-tool. The specific software-tools
could be put together from only a few “standard-elements” and could be flexibly configured.

4.1 The structure of the software-tool

This approach attempts to build up the product development methods from simple lists,
respectively as composites of lists and their conjunctions. In other words, the lists are a kind
of ‘common denominator’. By combining, orientating and setting conjunctions between lists,
different methods can be represented.

In the following examples, the performance shall be illustrated at different levels of
complexity.
4.2 Simple list — Listing

The simplest case is a plain listing as in the given example: a list of functions (Figure 2). The
functions which are realized with a subject are listed here.

functions

conduct energy

transform energy

convert energy

Figure 2 List of functions as simple example for a listing

In this example no conjunctions are necessary since there is only one list. Examples with
more lists will follow later on.

4.3 Conjunctions between the lists

It shall be possible to establish different conjunctions to associate the list entries. Figures,
predications (logical or mathematical) and even totally free input will be possible.

Figures: A figure as a conjunction between two list entries could occur, for example, in a
comparison. The correlation between compared subjects could be described with the
figures 0 (less important), 1 (equal importance) or 2 (more important). (Figure 3a)

99 ¢

Predications: Mathematical predications, such as “greater than”, “less than”, “equal to” or
“is subset of”’, “is set union” are imaginable, as well as

Logical predications: For example, in an evaluation where a “cross” signalizes the
conjunction between the evaluation criterion and the reached value, or as shown in the
example below in a design catalogue. (Figure 3b)

Free input: Even free input such as text or pictures/sketches shall be able to be
inserted (Figure 3c¢).

........

Type A | Type B | Type C 1% r\%
Type A 2 1 " i %}II
Type B 0 0 2) YL
Type C 1 (2) g Jlps)

P—
el @TE:Z; "
7
=
g E
E 2
o
-

drige Getricbe ¥

Figure 3 Examples of conjunctions

4.4 Simple composites of lists — Listing of lists

A composite from two lists could be, for example, a list of requirements (Figure 4). A single
requirement can be understood as a simple list which contains the listed attributes
(e. g. criterion, optimum, target value, spoilt value, responsibility, date) of the requirement.
The order of the requirements may be arranged by the user in order to structure the list of
requirements thematically. But there is no mandatory overvaluation because of the sorting.

The conjunctions between the lists may be characterized as “textual addition”. The statements
of the single requirements are accumulated. A further connection between the listed
requirements is not inevitable.

I Doramator I Ontimum [Taraotvaluo | Snailt voluo | Docnonsibla. | Doto |
Cutting force <500 N 500 N — 550 N > 600 N Wt 04.02.2003 |
Positioning time <3 sec 3 sec — 5 sec > 5 sec Bg 04. 02 2003 |

List ,,Attributes of single requirement >

Figure 4 List of requirements as a combination of different lists

In this arrangement, only the header column of the evolving table is fixed by the titles
(cutting force, speed and positioning time) of the arranged list (requirements). The number of
(filled) columns depends on the user. In this example, a requirement could perhaps have only
a target value and no optimal or spoilt value.

In a morphological box (in this case: partial solutions for partial functions) no row has to be
filled completely. The number of solutions for a function may vary from one function to
another. (Figure 5)

N‘“ﬂ ‘ Tellssums A [iz l Thilltuue 3
ﬁ_ d:«ffq:gkrebf Aa 3 maH cklebe
.] .
Hu('mauhimduuj . j-— Pj’ ’ [\\\] b :\]
ﬁug ?hlvu“bﬁ’“"j elelbowaguehitcle fabluplur
Kapluny a5 ap
(ibectraguugsglieder (° @
Varinbel
Ecsk Clafe * Ve ‘
i
| Y OB 1]
2ueile Uofe Variabed !
lochtifel m_Kuuckct nw'm'bmd Eiud\tfﬂ (w Ricwet b
% i
b B © (o) ®
| e T a——— -
Abkrick T"' ' J,’ F e
— — — t}—§. I q o
—] Jil L
Gebbuse iF ” I:_‘ - | }r
qetel (Hitte) aetailt (Oben) ol for e
Polew howrelev H:g:;:L H:‘;':OT(L
List “Different solutions for one sub-function” >

Figure 5 Example for combined lists with fixed header column and flexible header row — Morphological box

4.5 Composite of lists — Any conjunction

It is not always the case that there are fields left empty, as mentioned in 4.4. There are also
composites of lists in which every field has to be filled in.

If there are two lists linked normally, a field “number of entries list 1”-times-
“number of entries list 2” is stretched as in a comparison or as shown here in a cost analysis.
Both the number of columns and the number of rows are fixed due to the linked
lists. (Figure 6).

I Bauteil
Verfahren
Funktion

Pendel + Pendellagerung |Wirbelstrombrem| Fotozellen + Platine Gehéuse,
Gewicht + Kugellager se + Halter Halter Schrauben SiTe

DA eIy TN T T o T T o TS T o T o proz. abs.
3,72 38,18%| 13,02 7,271%| 2,48| 12,73%| 4,34| 25,45%| 8,68 5,45% 100,00% 34,10
An Objekten befestigen 0,00 0,00%| 0,00 0,00%| 0,00 0,00%| 0,00 0,00%] 0,00 0,00% 0,00% 0,00
Eingangsgrofe erfassen 80,00%| 2,98| 20,00%| 2,60 0,00%| 0,00 0,00%| 0,00 0,00%] 0,00 0,00% 16,36% 5,58
Exakte Messgrofie ausgeben 5,00%| 0,19] 70,00%] 9,11 0,00%| 0,00f 50,00%| 2,47 85,00%| 7,38 0,00% 55,27% 18,85
Storgrofden verkleinern /
verhindern 15,00%| 0,56 10,00%| 1,30] 100,00%| 2,48 50,00%| 2,17 15,00%| 1,30] 100,00% 28,36% 9,67
' " S:72] T00.00%] 1302 T00.00%] Z,A8] T00.00%] 2:34] T00.00%] 5.08] 100.00%] 100,00% 34,10

List “List of sub-functions” Conjunctions

Figure 6 Example of combined lists with a fixed header column and a fixed header row — Cost analysis

In this example of a cost analysis, no empty fields are allowed as a conjunction. If the
intention is to state that there is no connection between two entries, at least the conjunction
“0” has to be set.

As an example of a conjunction of more than two lists, a design catalogue 1is
shown (Figure 7).

Gliederungsteil Hauptteil | Zugriffsteil]
Anzanl| Getriebe | Typisc | SchiuBar] Bezeic Beispiel Magliche Funktionen
der [bauform | ne t in denf hnung RotRot | Rot-Trans | Trans-
Getrie Getrie | Ubertrag Trans
beglie beglie | ungsgele| Nr O On
der der nken -

O - | (= |
@
£2
5
3 1] x X
EN
@ hdl
3 I
- 5
& 3
3 o
g 3
5
2
5 2 | x X
ES
3
'3
k] EE
4 =]
= 3
2 g g5 3 X
g]]
£ 2 3
3 = £
‘; @ @
] i
2 5 3
Ey] 2 b 5
3 2 5t 7]
3] 5
5 H e §
* e - |
<
52 3
28 2 5 | x x| x| x
£z 2
< 2
s 52
E 2
5 2% £ 6 | x x
E] g 53 E
) s Lz .
£ s Kettentrieb
2 T
= I g Ty 04 2 T
g ’ : : : % ())
o = = (7 . .
g £ = < /) Conjunctions
B <] - 1 2 J
& 3
2 '3
2] @ X2 /u
Bl 2 22 f g2 |t T
3 %E 28 %-E PR " 8 x x| x| x
& 2% 56 | 28 |F) r
= Schubkurbelgetriebe

Lists ,,Number of parts*

Lists ,,Form*

Lists ,, Typical parts*

Lists ,,Kind of power transfer*

Figure 7 Example of combined lists with more than two lists — Design catalogue

The combined lists are the “number of parts”, “form”, typical parts” and “kind of power
transfer” in the columns, and “term” and “possible function” in the rows. In the field of
conjunctions the different types of conjunction are set, as mentioned above.

5 Outlook

To support the application of product development methods effectively such a software-tool
has to be simple to use, easy to learn and for the most part self-explanatory. To prove this,
further steps must be taken:

- First, some methods have to be realized in such a software-tool to show the feasibility.

- The software-tool should be tested in a small project (e. g. student research project or
final project), later on maybe in some cooperation project with industrial partners.

- The gained insights should be continuously optimized.

- At the same time the number of realized product development methods could be
expanded.

References

[1]

(2]

[3]

[4]

[5]
[6]

[7]

Birkhofer, H., Berger, B., Walter, S., “Modularization of Knowledge — A New
Approach in the Field of Product Innovation”, Proceedings of the 7th International
Design Conference DESIGN 2002, Dubrovnik 2002, Vol. 1, pp. 289 - 294.

Birkhofer, H., Kloberdanz, H., Sauer, T., Berger, B., ,,Why methods don’t work and
how to get them work”, Proceedings of the 3rd international seminar and workshop
‘Engineering Design in Integrated Product Development’, EDIProD 2002, Zielona Gora
— Lagow 2002, pp. 29 - 36.

Birkhofer, H., Kloberdanz, H., Berger, B., Sauer, T., ,,Cleaning up design methods —
describing methods completely and standardized”, Proceedings of the 7th International
Design Conference DESIGN 2002, Dubrovnik 2002, Vol. 1, pp. 17 - 22.

Birkhofer, H., Lindemann, U., Albers, A., Meier, M., ,,Product Development as a
structured and interactive network of knowledge — A revolutionary approach”,
International Conference on Engineering Design ICED 2001, Glasgow 2001.

Ehrlenspiel, K., ,,Integrierte Produktentwicklung®, Miinchen, Hanser 1995.

Pahl, G., Beitz, W., ,Engineering Design“, 2nd Edition, Springer Publisher,
London 1996.

Zanker, W., ,,Situative Anpassung und Neukombination von Entwicklungsmethoden®,
Dissertation, Lehrstuhl fiir Produktentwicklung, TU Miinchen, 2000.

Stephan Walter

Product development and machine elements, pmd
Darmstadt University of Technology
Magdalenenstrasse 4

D-64289 Darmstadt, Germany

phone: +49 (0) 6151 /16 33 78

fax: +49 (0) 6151 /16 33 55

eMail: walter@pmd.tu-darmstadt.de

