
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN

ICED03 STOCKHOLM, AUGUST 19-21, 2003

A RIGOROUS FRAMEWORK FOR MAKING COMMONALITY AND
MODULARITY DECISIONS IN OPTIMAL DESIGN OF PRODUCT

FAMILIES

Ryan Fellini, Michael Kokkolaras, and Panos Y. Papalambros

Abstract
This article proposes a set of math-based approaches for making commonality and modularity
decisions when designing product families. The performance of products that share some
components is usually compromised relative to the individual optimum. This deviation occurs
because of the commonality constraints that are included in the optimal design problem,
especially when the objectives in the multicriteria formulation are conflicting. Choosing
components for sharing may depend on what performance deviations can be tolerated. We
present rigorous strategies for choosing components to be shared without exceeding user-
specified bounds on performance. In addition, we consider modularity to be an outcome of
the commonality decision process.

Keywords: Optimal Design, Product Families, Commonality, Modularity

1 Introduction
We refer to products that have similar architecture but different functional requirements as
variants. Product variants can be derived based on a platform, i.e., a set of common parts, in
which case they form a product family. Product platforms enable the development of variants
for rapid adjustment to changing market needs while keeping development costs and time-
cycles low [1,2]. The functional requirements of product variants may be conflicting, in
which case family optimal designs are compromised relative to individually optimized
designs [3]. The design challenge is to maximize commonality while minimizing individual
performance losses.

We focus on math-based methodologies for determining which components should be shared.
Chen et al. and Nayak et al. use robust design principles to select the platform for a family of
scalable products [4,5]. Gonzalez-Zugasti et al. and Gonzalez-Zugasti and Otto cluster parts
into modules to reduce the problem size, and then solve the combinatorial design problem for
modular product families [6,7]. Fujita and Yoshida follow a similar approach for
simultaneous optimization of module combination and attributes [8]. The latter is based on
previous work of Fujita et al. [9,10,11]. A genetic algorithm (GA) is linked with sequential
quadratic programming (SQP) in the above methods. The GA is used to choose the modules
to be shared and SQP is used to solve the family design problem. D’Souza, B. and Simpson
have also adopted GAs for solving the commonality selection and family design problems
[12]. The number of possible combinations increases exponentially the number of products
and/or variables. Therefore, combinatorial algorithms like GAs may be insufficient for
solving even problems of modest size.

In this article we integrate two approaches developed in previous work into a rigorous
framework of commonality strategies. The first approach uses first-order information,
obtained from solving the individual optimal design problems, to compute a metric for
performance deviations attributed to component sharing [13]. The second approach uses a
relaxed formulation of the combinatorial problem to maximize commonality, while satisfying
designer-specified bounds on individual performance losses [14]. The main idea is to use the
first approach as a filter to reduce the platform selection problem size and the second
approach to maximize commonality while minimizing individual performance losses.
However, there are more than one ways to combine the two approaches. We propose some
here.

The article is organized as follows: after presenting some necessary definitions to establish a
common glossary, we review the two approaches. We then formulate the general combined
methodology, and discuss different options. We conclude with a discussion on how
modularity information can be extracted from the commonality decision process.

2 Definitions
A product is an artifact created with the intent to serve user needs, i.e., to satisfy some
functional requirements. In the present context the most fundamental term used when
discussing product design is the term model. A model is a mathematical representation of the
artifact and is a core element of engineering design and analysis. A model accepts a set of
variables as inputs and returns a set of responses as outputs. A collection of products will be
represented by the set 1 2{ , , }P p p= … used to distinguish each product p P∈ . A product p is

associated with a vector of input variables
pp n∈x R and a vector of output

responses
pp d∈R �R . In the context of a model the vector px is assumed to describe a given

design fully, namely, if values are assigned to all the components of px then p is defined
uniquely. Similarly, pR is assumed to represent all responses of interest in evaluating the
attributes of a given design. Clearly, these are strong assumptions but necessary in the use of
any analytical tool. The designer is expected to augment the insights gained from analysis to
reach the best design possible by including non-analytical considerations.

Assuming that we can map the functional requirements of a product to model responses, we
formulate the optimal design model for a product p as

 max ()

subject to ()
 () ,

p

p p

p p

p p

f

≤

=

x
x

g x 0
h x 0

 (1)

where the objective function pf , representing performance, is maximized, and additional
product requirements are represented by design inequality and equality constraint functions

pg and ph , respectively.

A component is defined as a manufactured object that is the smallest (indivisible) element of
a product. An assumption is made that the product can readily be decomposed into its base
components. A component will have its own set of design variables,

pc p⊂x x , which are a
subset of the product design variables. An assembly is an object constructed from a set of
connected components.

It should be noted that the point of reference when defining a product can easily change. The
engine of a vehicle is an assembly, which is part of an automobile, but could be designed as a
product composed of various assemblies and components such as the exhaust system, fuel
injection system, etc. In this case the point of reference changes and the engine is at the “top
level” of the product hierarchical description.

The product architecture is the configuration of components and assemblies within a product
and includes the set of instructions for assembly of the product. The costs associated with
manufacturing are not considered in this work. Variable costs having to do with mass
production, etc., are also ignored.

A product platform is the set of all elements, interfaces, manufacturing and systems processes
that are common in a set of products. This article focuses on commonality in product design
only, therefore it is limited to parts sharing only. The following notation is used to describe a
product platform. The set pqS consists of the index pairs of elements that are shared between
two products p and q . The set { | , ; }pqS S p q P p q= ∈ < describes element sharing
throughout the family. The empty set S∅ defines the null platform (no sharing between
products).

Various types of sharing can be used based on the definitions in the previous section. In
component sharing one or more components are common across a family of products.
Likewise, assemblies can be shared between products. In addition, it is possible to share
“scaled” versions of components. Mathematically this can be described as variable sharing,
where components are based on a platform (of variables) themselves.

A product family is the set of products that share product platform. The set S maps the
relationships between products in P . The product family can have an objective Ff which is a
function of the design variables of the entire family, 1 2, ,p pF  =  x x x … . Such a family

objective could be, e.g., cost or profit. Likewise, we can have family constraints Fg and Fh ,
e.g., for a family of automobiles there may be constraints on production capacity and/or
corporate average fuel economy (CAFE) penalties. Assuming that the commonality decisions
have been made, the multiobjective optimal family design problem is formulated as

 max { , ()} , , (,) ,

subject to () ; ()
 () ; ()

F

F p p pq

F F p p

F F p p

p q
i j

f f p q P i j S p q

x x

∀ ∈ ∈ <

≤ ≤

= =

=

x
x

g x 0 g x 0
h x 0 h x 0

 (2)

A module is a special case of a component in a product that produces variety when
interchanged (cf. Figure 1).

Figure 1. Modular product with one interchangeable module.

Ideally a module should allow for the capability to modify the characteristics defining the
product independently. For example, one factor in choosing a computer is sound capability.
Therefore as a module the sound card can be interchanged to control this specific metric and
does not influence other metrics such as the video quality or the processing speed. The
assumption will also be made that a module need not be connected. For example, two
components in a product that influence a particular product response, p

iR , may be not
connected, but can be exchanged simultaneously to create a new product. The set

},m,{m p
2

p
1 …=pM is used to represent the modules in a product p . A module is formed

from a subset of the components which make up a product, and we assume that components
are not shared between modules. Again, this is an important assumption.

pmx consists of all
the component design variables included in the module.

Two important aspects regarding modules is that they have an interface defined for
interchangeability and that the interactions between the module and its surrounding should be
minimized to afford better encapsulation of its design and function. For example, if the
engine block is considered a module within a set of engine products and the piston is part of
the platform, the bore of the engine block modules should fit that of the piston platform. This
common interface is the platform shared amongst modules. Modules themselves can be
shared by a subset of the products, forming a modular (sub)platform (cf. Figure 2).

Figure 2. Modular products with module sharing among a subset of products.

An example of a modular platform can be a family of automobiles where variety is produced
by interchanging engines. While two of the vehicles may use the same engine, a third vehicle
may use a different engine (where the engines are interchangeable among the three vehicles).
The first two vehicles would be differentiated perhaps by a second module influencing some
other vehicle metric.

3 Platform Selection
In this section we review two approaches developed for solving the commonality selection
problem.

3.1 Performance Deviation Vector
In this approach we use optimality and sensitivity information obtained from solving the
individual optimal design problems to estimate potential deviation from the null-platform
optimal design incurred by sharing parts with other product variants. Specifically, assuming
that individual optima lie “close” enough to each other and that the family design will be in
their convex hull, we use a first-order Taylor series approximation to derive an upper bound

iΠ on the performance deviation due to sharing variable ix [13]. For two variants A and B this
upper bound is given by

() (), , , ,(1) max ,0 max ,0 ,
A B

A o A o B o B o
i i i i i j i i i i i j i

j G j G

f g f gλ δ δ λ δ δ
∈ ∈

   
Π = − ∇ + ∇ + ∇ + ∇      

   
∑ ∑ (3)

where 0 1iλ≤ ≤ , , ,A o B o
i i ix xδ = − , the superscript o denotes null-platform, and pG is the set of

active constraints of product p. The designer can sort the values i iΠ ∀ in a so-called
performance deviation vector (PDV) and base his decision on sharing according to some
threshold. An example on the possible use of the PDV is illustrated in Figure 6 [13]. In this
example, there is a total of 63 variables that can be shared. The first 25 variables have zero
performance deviation, i.e., the optimal design values corresponding to the null-platform
optima were identical. Therefore, these variables correspond to “naturally” shared
components. The designer may want to share nineteen additional variables since the
performance deviation value is below 0.01 for these variables. In this case, the designer
chooses according to an absolute threshold. An alternative is to choose according to a relative
increase of performance deviation, i.e., using the ratio 1() /i i i+Π −Π Π .

Figure 6. Graphical representation of the sorted PDV.

The performance deviation vector approach is computationally quite affordable but relies on
the above mentioned assumptions and involves the heuristic of selecting a threshold for
making commonality decisions. It is thus more appropriate for what we refer to as “mild”
variants.

3.2 Relaxed Combinatorial Problem
This approach enables the designer to choose what performance losses are acceptable relative
to null-platform optima. Component sharing is then determined through the solution of a
relaxed combinatorial commonality maximization combinatorial problem subject to these
performance bounds. The original mixed-discrete optimization problem has been
reformulated using a continuous function to approximate the binary decisions [14]:

()
1 2[, ,...] (,)

,

min , , (,) ,

subject to ()
 ()
 () (1) ,

p p

p q pq
i j

i j pq

p p

p p

p p p p o

D x x p q P i j S p q

f L f

α
=

− ∀ ∈ ∈ <

≤

=

≥ −

∑
x x x

g x 0
h x 0

x

 (4)

where () ()21 1/ (() /) 1p q p q
i j i jD x x x xα α− = − − + . In our experience, a good value for

 is 0.05α . The designer can solve Problem (3) for different loss bounds pL until he/she is
satisfied with the tradeoff between maximizing commonality and minimizing individual
performance losses. The relaxed combinatorial approach is free of simplifying assumptions
but is computationally expensive, especially as the number of product variants and sharing
candidates increases.

4 Combined Commonality Strategies
In this section we propose a number of available options for combining the two approaches to
take advantage of their strengths. The first approach has the advantage of being very
inexpensive and allows for a reasonable approximate ranking of the variables “shareability”.
The second approach is quite accurate in that one can specify a bound on performance
deviation and then optimize to maximize commonality with respect to this bound. One
modification to the first-order method must be made to facilitate the integration of the two
approaches. This modification is necessary for commonality decisions involving components
specified by vectors of design variables. This is accomplished by aggregating the deviation
values of the design variables defining a component c into a single performance deviation
value cΠ .

4.1 Linking the first-order method with an optimizer
The first option is to link the performance deviation vector approach to an optimization
algorithm. This is based on the assumption that the components have been sorted “correctly”
with respect to their influence to the product design. The algorithm can be as simple as the
bisection or golden section methods or one may implement more sophisticated derivative-free
algorithms. Gradient-based algorithms should only be used with caution because of the noisy
nature of the vector. The idea is as follows. We can compute the maximum loss on
performance by finding the so-called total-platform designs by solving the family design
problem - Problem (2) - assuming that all design variables are shared. Since our objective is
to maximize component sharing, we want to move to the right on the horizontal axis. At each
iteration we optimize the family designs given the selected level of sharing by solving
Problem (2), and determine our actual performance deviation. If performance loss is
acceptable we select a bigger platform, otherwise a smaller one. Convergence is achieved
when the desired bound on performance loss is met given maximum commonality. Figure 7
illustrates this approach for three iterations of the bisection method.

Figure 7. Optimizing over the performance deviation vector.

4.2 Using the first-order method as a filter
Another straightforward approach to combining the approaches is to use the first-order
method as a filter to reduce the problem size solved by the relaxed combinatorial problem.
We will review two alternative ways to do this.

The first alternative uses the first-order method to assume an initial set of components that
can be shared. This is illustrated on the left plot of Figure 8.

Figure 8. Using the performance deviation vector to reduce the relaxed combinatorial problem size.

The designer decides to share a number of components by means of a threshold according to
the discussion in Section 3.1. Solving the relaxed combinatorial problem on the remaining
candidates, one can determine if more components can be shared.

Alternatively, one can use the first-order method to determine the candidate platform and
solve the relaxed combinatorial problem to determine if, or how many, of the components in
the candidate platform can be actually shared. This alternative is illustrated on the right plot
of Figure 8.

4.3 Combining the approaches into an iterative method
The previous options can also be combined into an iterative method. The motivation is to
formulate a strategy that uses the performance deviation vector information to determine the
smallest problem size possible for the relaxed combinatorial problem. In the example of
Figure 9, a threshold of 0.01 we observe that the size of the relaxed combinatorial problem is
smaller when considering the remaining candidates. If we happen to determine that we cannot
share any additional components, we may want to reduce the threshold and solve the relaxed
combinatorial problem on a subset of the initial candidate platform, and so on.

Figure 9. Iterative solution of the relaxed combinatorial problem.

This proposed iterative method is summarized in the following diagram:

5 Modularity Decisions
After making commonality decisions by means of one of the alternatives described in the
previous section we are left with a set of components which provide the variety in the family.
The variants are derived by changing these components. Therefore, components that are part
of the module set are readily identified as the ones that are not being shared by all products.
Subplatforms (sharing between a subset of products) represent in effect the sharing of a
particular module. Note that we can also consider the platform itself as a module, namely, a
module that produces no variety.

The final step is to cluster components that are now members of the module set M into
individual modules p

im . This can be accomplished by using partitioning algorithms [15] to
cluster components that impact various critical responses of the product (cf. Figure 10).

Figure 10. Extracting modularity from partitioned dependency table.

These algorithms can be applied to the functional dependency table (FDT) of the modules
p
im . This partitioning also aids the designer in understanding the interactions in order to

choose modules that can be designed and interchanged independently.

6 Conclusions
A rigorous framework for making commonality decisions when designing a product family
has been developed by combining two previously developed math-based approaches. Several
combination alternatives have been presented to provide more than one option to the
designer, who can utilize them on a case-by-case basis. It has been also demonstrated that
modularity can be extracted as a byproduct of the commonality decision process. Some of the
proposed strategies of this article have been applied successfully to automotive body structure
and engine family design problems [16,17].

7 Acknowledgement
This research was partially supported by the Automotive Research Center, a US Army Center
of Excellence in Modeling and Simulation of Ground Vehicles, by a US Army Dual-Use
Science and Technology Project, and by the General Motors Collaborative Research
Laboratory at the University of Michigan. This support is gratefully acknowledged.

References
[1] Meyer, M. and Lehnerd, A., “The Power of Product Platforms”, The Free Press, New

York, 1997.

[2] Ericsson, A. and Erixon, G., “Controlling Design Variants”, ASME Press, New York,
1999.

[3] Nelson, S., Parkinson, M., and Papalambros, P.Y., “Multicriteria optimization in
product platform design”, in Proceedings of the 25th ASME Design Engineering
Technical Conferences, Las Vegas, Nevada, 1999 paper no. DAC-8676, also appeared
in ASME Journal of Mechanical Design, 123(2):199-204, June, 2001.

[4] Chen, W., Allen, J., and Mistree, F., “The robust concept exploration method for
enhancing concurrent systems design”, Journal of Concurrent Engineering: Research
and Applications, 5(3), 203–217, 1997.

[5] Nayak, R., Chen, W., and Simpson, T., “A variation-based methodology for product
family design”, in Proceedings of the 26th ASME Design Engineering Technical
Conferences, Baltimore, Maryland, 2000, paper no. DAC-14264, also appeared in
Engineering Optimization, 34(1):69-81, 2002.

[6] Gonzalez-Zugasti, J., Otto, K., and Baker, J., “A method for architecting product
platforms with an application to interplanetary mission design”, in Proceedings of the
24th ASME Design Engineering Technical Conferences, Atlanta, Georgia, 1998, paper
no. DAC-5608.

[7] Gonzalez-Zugasti, J. and Otto, K., “Modular platform-based product family design”, in
Proceedings of the 26th ASME Design Engineering Technical Conferences, Baltimore,
Maryland, 2000, paper no. DAC-14238.

[8] Fujita, K. and Yoshida, H., “Product variety optimization: Simultaneous optimization
of module combination and module attributes”, in Proceedings of the 27th ASME
Design Engineering Technical Conferences, Pittsburgh, Pensylvania, 2001, paper no.
DAC-21058.

[9] Fujita, K., Akagi, S., Yoneda, T., and Ishikawa, M., “Simultaneous optimization of
product family sharing system structure and configuration”, in Proceedings of the 24th
ASME Design Engineering Technical Conferences, Atlanta, Georgia, 1998, paper no.
DFM-5722.

[10] Fujita, K., Sakaguchi, H., and Akagi, S., “Product variety deployment and its
optimization under modular architecture and module commonalization”, in Proceedings
of the 25th ASME Design Engineering Technical Conferences, Las Vegas, Nevada,
1999, paper no. DFM-8923.

[11] Fujita, K., “Product variety optimization under modular architecture”, in Proceedings of
the Third International Symposium on Tools and Methods of Competitive Engineering,
2000, Delft, The Netherlands.

[12] D’Souza, B. and Simpson, T., “A genetic algorithm based method for product
familydesign optimization”, in Proceedings of the 28th ASME Design Engineering
Technical Conferences, Montreal, Quebec, Canada, 2002, paper no. DAC-34106.

[13] Fellini, R., Kokkolaras, M., Michelena, N., Papalambros, P.Y., Saitou, K., Perez-
Duarte, A., and Fenyes, P., “A sensitivity-based commonality strategy for family
products of mild variation, with application to automotive body structures”, in
Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Atlanta, Georgia, 2002, paper no. AIAA-2002-5610.

[14] Fellini, R., Kokkolaras, M., Papalambros, P.Y., and Perez-Duarte, A., “Platform
selection under performance loss constraints in optimal design of product families”, in
Proceedings of the 28th ASME Design Engineering Technical Conferences, Montreal,
Quebec, Canada, 2002, paper no. DAC-34099.

[15] Michelena, N. and Papalambros, PY., “A hypergraph framework for optimal model-
based decomposition of design problems”, Journal of Computational Optimization and
Applications, Vol. 8, No. 2, pp. 173-196, September, 1997.

[16] Fellini, R., Kokkolaras, M., and Papalambros, P.Y., “Quantitative Platform Selection in
Optimal Design of Product Families, with Application to Automotive Engine Design”,
submitted to Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing, January 2003.

[17] Fellini, R., “A Model-Based Methodology for Product Family Design”, PhD thesis,
University of Michigan, 2003.

For more information please contact:

Ryan Fellini, University of Michigan, Department of Mechanical Engineering,
2350 Hayward St., Ann Arbor, Michigan, 48109-2125, United States
Tel: +1 734 647-8401, Fax: +1 734 647-8403, E-mail: rfellini@umich.edu
URL: http://ode.engin.umich.edu

