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1 ABSTRACT

Testing is an extremely important part of the software lifecycle, accounting for as much as 50% of the
total development costs for many projects. Formalised testing is no longer the exclusive domain of
safety critical applications, as toleration of faults and bugs in software is reducing across the software
world. With this in mind, rigourous tools, methodologies and solutions are needed to automate as
much of the testing work as possible.

One problem often encountered in testing large, monolithic applications is the lack of clarity in the
architecture of a software application. Often, a lack of process regarding the architecture leads to so
called “spaghetti code”, where parts of the system are characterised by inappropriate relalationships,
unstructured code blocks and “blobs”. Such systems are often impossible to test. Without formal
architectural rules in place, and a system or tool to enforce these rules and design intent, the system
often becomes unmanageable and untestable. Such systems are also prone to documentation problems,
change control issues and generally poor lifecycle management.

This presentation first of all examines the problem of specifying architecture and communicating
design intent formally, and then secondly, how to test the implementation of this design intent. It is
aimed at software architects, designers, developers and testers. Using advanced DSM-based
techniques and tools, it is now possible for the developer and architect to work together to ensure that
the problem of architectural degredation and erosion of a software system, so often the biggest
problem a software project faces, remains a thing of the past. Architects, developers and testers can
now work together to produce better software that is also easier to extend, reuse and understand.

Many software problems are introduced when the design is converted to implementation during the
coding phase of a project. The benefits of an architecture-first testing approach are shown through a
practical demonstration. It can also be shown that a clean architecture leads to reductions in time taken
for unit and integration testing phases to complete. At the developer desktop level, a clean architecture
can help identify code coverage / dead code issues, and thus many defects can be found even earlier in
the lifecycle by adopting this approach.
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What you will learn today

a 2 A new approach to specify and test software architecture by utilizing
= inter-module dependencies.

?‘*/, 2* How knowledge of the architecture can help improve your testing
V

4’ This session includes an actual demo and
several real life examples
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Agenda

#* The Problem!

¥ Specify architecture
% What's a Dependency Structure Matrix (DSM)
x® Architectural Patterns

# Test the architecture with Design Rules

#*  Demo with a real application

# Improve testing with knowledge of architecture

® Q&A
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The Problem - How uncontrolled software complexity happens A
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How do we efficiently test & add features to this software?

... what software looks like after
business success!
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Testing the Architecture with Design Rules

/\\i “® Succinct specification of acceptable and unacceptable dependencies
x\ i between subsystems

v
2z & Each cell of the DSM represents design intent

/-\ | |

»* DSM offers a powerful way to visualize and specify design rules
l“' «* Design Rules enable testing of architecture
4

Dependency Model = DSM + Design Rules
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Design Rules

. e EIEVTTED DSM with Rules View
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-® External rules control library and 3 party usage

’\/" 2 Internal rules are set at highest level of hierarchy and inherited down to
" lowest level
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Design Rules
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Example: ANT Conceptual Architecture /
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Demonstration
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Architectural Visibility improves Testing

\5 L Improve Testing with Architectural Knowledge
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Conceptual Architecture of Eclipse?
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Dependency Model View of Eclipse Platform
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Conceptual Architecture - Eclipse Platform
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Testing Data Architecture ...
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Testing the Enterprise Architecture
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Summary: Testing the Big Picture View

«®  Specify the big picture view using DSMs - approach allows you to represent
massive systems

#®  Formalize design intent so you can test architectural erosion
:® Easy to adopt—Use it at any stage

of the lifecycle
¥ Use the knowledge of the architecture to improve your testing
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