9™ INTERNATIONAL DESIGN STRUCTURE MATRIX CONFERENCE, DSM’07
16 — 18 OCTOBER 2007, MUNICH, GERMANY

USING DSM TO TEST THE SOFTWARE
ARCHITECTURE

Neil Langmead

Keywords: Architecture, DSM, Testing, Spaghetti Code, Developer

1 ABSTRACT

Testing is an extremely important part of the software lifecycle, accounting for as much as 50% of the
total development costs for many projects. Formalised testing is no longer the exclusive domain of
safety critical applications, as toleration of faults and bugs in software is reducing across the software
world. With this in mind, rigourous tools, methodologies and solutions are needed to automate as
much of the testing work as possible.

One problem often encountered in testing large, monolithic applications is the lack of clarity in the
architecture of a software application. Often, a lack of process regarding the architecture leads to so
called “spaghetti code”, where parts of the system are characterised by inappropriate relalationships,
unstructured code blocks and “blobs”. Such systems are often impossible to test. Without formal
architectural rules in place, and a system or tool to enforce these rules and design intent, the system
often becomes unmanageable and untestable. Such systems are also prone to documentation problems,
change control issues and generally poor lifecycle management.

This presentation first of all examines the problem of specifying architecture and communicating
design intent formally, and then secondly, how to test the implementation of this design intent. It is
aimed at software architects, designers, developers and testers. Using advanced DSM-based
techniques and tools, it is now possible for the developer and architect to work together to ensure that
the problem of architectural degredation and erosion of a software system, so often the biggest
problem a software project faces, remains a thing of the past. Architects, developers and testers can
now work together to produce better software that is also easier to extend, reuse and understand.

Many software problems are introduced when the design is converted to implementation during the
coding phase of a project. The benefits of an architecture-first testing approach are shown through a
practical demonstration. It can also be shown that a clean architecture leads to reductions in time taken
for unit and integration testing phases to complete. At the developer desktop level, a clean architecture
can help identify code coverage / dead code issues, and thus many defects can be found even earlier in
the lifecycle by adopting this approach.

Contact: Neil Langmead
Emenda Software Limited
Elisabethstrasse 91

80797 Munich

Germany

Tel.: +49 (0) 89 59 08 - 2029
Fax: +49 (0) 89 59 08 - 1200
Mobile: +49 (0) 173 691 3617
Web: www.emenda.eu

373

CAPITALIZE ON COMPLEXITY

OTH INTERNATIONAL DSM CONFERENCE

)

5 - Testing the Software Architecture

z.) "y Neil Langmead
ﬁ " Emenda

Product Development @ ‘@“'
Technische Universitat Miinchen

CAPITALIZE ON COMPLEXITY

What you will learn today

a 2 A new approach to specify and test software architecture by utilizing
= inter-module dependencies.

?‘*/, 2* How knowledge of the architecture can help improve your testing
V

4’ This session includes an actual demo and
several real life examples

M & <=
Product Development - £
Technische Universitat Minchen

9th International DSM Conference 2007-2

374

IN COOPERATION WITH BMW GROUP

Agenda

#* The Problem!

¥ Specify architecture
% What's a Dependency Structure Matrix (DSM)
x® Architectural Patterns

Test the architecture with Design Rules

#* Demo with a real application

Improve testing with knowledge of architecture

® Q&A

Tum @t_@;

Technische Universitat Miinchen
9th International DSM Conference 2007- 3

m Product Development

IN COOPERATION WITH BMW GRroUP

The Problem - How uncontrolled software complexity happens A

S
23
QT
o —
a®
f \ f \ f \ o X
<
Version 1-2 I | Version 3-4 I | Version 5-6 I
e
[72]
0O =
2%
®
! Reality Plan ! Reality Plan ! Reality
=Tight design ' =Reduced =Clean up bugs : =Key architects & =Must fix the : =Complexity and
spec 1 functionality =Take app to “next ! developers gone architecture i code is growing
=Solid i =Architecture level” i ®"Documentation is || *No new defects i too quickly
architecture i erosion =Respond to 15 i non-existent =Reuse i =Bug fix versus
=Comprehensive | =Limited testing customer fixes ' sNew team on components for | feature battle
Functionality i to meet ship date | |=Control Software ! learning curve other applications ! underway
i =Plan to, “fix bugs | | Complexity 1 =Security =Outsource some ! =Architecture is
1 inv1.s” 1 concerns development : unknown

@
@","
Technische Universitat Minchen

9th International DSM Conference 2007- 4

dl

m Product Development

375

CAPITALIZE ON COMPLEXITY

How do we efficiently test & add features to this software?

... what software looks like after
business success!

Product Development @ ‘@“'
Technische Universitat Minchen

9th International DSM Conference 2007- 5

CAPITALIZE ON COMPLEXITY

Testing the Architecture with Design Rules

/\\i “® Succinct specification of acceptable and unacceptable dependencies
x\ i between subsystems

v
2z & Each cell of the DSM represents design intent

/-\ | |

»* DSM offers a powerful way to visualize and specify design rules
l“' «* Design Rules enable testing of architecture
4

Dependency Model = DSM + Design Rules

m & <o-
Product Development - £
Technische Universitat Miinchen

9th International DSM Conference 2007- 6

376

CAPITALIZE ON COMPLEXITY

Design Rules

. e EIEVTTED DSM with Rules View

oy 1\F)-Subsystemi t|f . |17 |

5‘&// @ o Subsystem2 2| 3 3 Green Triangle — Dependency Acceptable
k/, e Subsystem3 3 v '_ Yellow Triangle — Dependency Unacceptable
“\‘ ‘ + Subsystem4 4|[6 (47 I Red Triangle — Rule Violation Discovered
a4

-® External rules control library and 3 party usage

’\/" 2 Internal rules are set at highest level of hierarchy and inherited down to
" lowest level

%
/
Y

(4
\ 4\
Product Development @ ‘@"
Technische Universitat Miinchen

9th International DSM Conference 2007- 7

CaAPITALIZE ON COMPLEXITY

Design Rules

$root |-—-|N|w|-h|u1| .
-l eppicaton 1 Rules for Layering
A 5 = 1. $root can-use $root
- 3 L e : h 2. model cannot-use application
\5\,,- % |+ domain 311726 | - | | 3. domain cannot-use application,
ﬁf’%,// -53_, [+ framework 4|75 |53 |40 | . model o
k/ o g sl10(13 |16 |13 4, fnrqaon;;wgg;chgnot use application,
“‘ 5. util cannot-use application, model,
&/ “x‘%ﬂ domain, framework
% ‘f”
ay =
’ [=1-{[+]- project 1] -
'O. R
}‘;x,/ S |G- comp-1 2|2 Independent
;‘l’ gL ail Components
yr‘ S |[+} comp-3 4|2
07 S
) [+]- sErices sllz|ls |77

M & <=
Product Development - _£
Technische Universitat Minchen

9th International DSM Conference 2007- 8

377

CAPITALIZE ON COMPLEXITY

Example: ANT Conceptual Architecture /
Layered)

Architecture
b E"“m:”) conation | [[5] optona] i ‘ Wlth th ree
| subsystems
Tasks use
t s | W common
= B infrastructure
- b= | Key Goal:
O] Allow
o i] B independent
— ; development of
Lo v

m Product Development o @ ‘@"
Technische Universitat Minchen

9th International DSM Conference 2007- 9

CAPITALIZE ON COMPLEXITY

Demonstration

B aHix |4 alella)
Fle Eclz ‘WMes Project ~a0lz danzow Helz
Nl - P BR FO¥ i I:I:;. b l:l v | | T | s | | g
{ Horg_apache_tools =
4 -
\ sl W e w oo | BB [y Timatin
3‘3 - comzles 2 2 | Btomn Count: * C2 =
£ | |4 conditicn 2 a —x
= Us=ge | pules | Fles | volatizng | 12 acs ficstior | work.Lis: | Fetris
T | & |2-opzona 3 :
i Py d By
7 | |k A i - Uecd By
e : e z
gl glle 2 " 28 3 [Emaaare ok
= F- Iszanz 6 H Etpn bashdebs
& o 7|20 B 8 E T iil[campizrs v
. E e L
il] um 1 u 4 3
i | g [us 9 EF-HERE IR PE s Jr—
=1+ #1-org anachz.t.., 10 1 o | Elzhont El -
= |71 organache.t.,. 12 4 5 [Emgreeiod: =
] lanz “3
he .t 1z El =]
T og anache.t., 12 E e T b
=hews Lepzndoney <inds
arg_aperhe_tnols | | S BT
FIlz: Cihlzogram FolZo\LoabIixtholploHESRpocIiantltl.iar =
Clozc Couks: 62 (inkcr elooo count: ZT) 5
Dep=idensy Counz: 223050 4

M & <=
Product Development - .
Technische Universitat Minchen

9th International DSM Conference 2007- 10

378

CAPITALIZE ON COMPLEXITY

m Product Development

CAPITALIZE ON COMPLEXITY

Architectural Visibility improves Testing

\5 L Improve Testing with Architectural Knowledge

Technische Universitat Minchen @

9th International DSM Conference 2007- 11

[=] aiori

[= dlents $r00t | B 5% T T S S

\ iy i1 . o

o S ‘ l; |n| [~ web-app 1
P P | | desktop-ui 2
§\ y e = == business-... 3 98
> \,/. [=] busiressmoce-services

‘;/ g -~ cost-maodel 4 6 |23
!\/ \ [+] Lasiness-meck] l:, i:l____data_mudel 5 188 312
) 4 ==l hibernate 6|4 | 2 | 8 28
,/_, }‘\“ {y‘. [+] cost-mace [+ data-model % |:| :(m| 7 3 1 g /‘
i{f ”‘ E. [~ core 8 | 29 | 16447~ /(A
S\ [= atilkizs

4! .
% " s | [Design Rules
% communicate the intent
%M' i and enable testing
4

m Product Development

TUT @:_@_:

Technische Universitat Minchen

9th International DSM Conference 2007- 12

379

IN COOPERATION WITH BMW GROUP

Conceptual Architecture of Eclipse?

Product Development _ o e EQE
Technische Universitat Minchen

9th International DSM Conference 2007- 13

IN COOPERATION WITH BMW GROUP

Dependency Model View of Eclipse Platform

Product Development . o 6 EQE
Technische Universitét Miinchen

9th International DSM Conference 2007- 14

380

CAPITALIZE ON COMPLEXITY

Conceptual Architecture - Eclipse Platform

[] boole-plakfarr

) \’(|) sortane | 1 BT the Dependencies

[=] =rin== T 1
! Ud= E B P - b- - t
x T | recise big picture
\ [+] boclz sgerper ol 13 - .
d = : view derived from
|

il

i View shows
¢ g E=— e accurate layering
« " : and vertical
s = | splitting

|

L1} jdmode a0 \

W = GH ;
@\ 4 1] conmaioliy 1] ogedpss Hcebuau 120 e

1. /, jracs-best: He = g adpsead toe E 1 A
)
;‘ {

"T B [#] taas pafam

Product Development @ -®'_
Technische Universitat Minchen

9th International DSM Conference 2007- 15

e

CAPITALIZE ON COMPLEXITY

Testing Data Architecture ...

b3 -mm;.:r:-um,—.E'lﬁlﬁ:;TEEFE?!P"FI‘SE:\‘H'SS}!E.‘“‘?AEEHH‘S
;
2
3
5
7
2
a
2
5
i |
=
3 -
= &k el
i wis
= o
e P
i3 a
b
=
o
=2
i
=
i s
e e v ey g P P P P e
=3
E il
0 |
; |

Product Development @ ‘@’
Technische Universitat Minchen

9th International DSM Conference 2007- 16

381

IN COOPERATION WITH BMW GRrouPp

Testing the Enterprise Architecture

froot e 13 e fen ”“”EEG%%EEBEN@&‘H&‘EEEEEﬂiﬂﬁiﬂ
X \ B | application-2 1
= % [application-1 2
- 5 Emodel 3
| & 5 business-logic 4
o | g 2
=T 4 i |Hdata-access 3 K
E MER. 21
2 g 0
fo) 0
BIB| | = IneuT_MeSsAGE 01|
& %5 INVESTMENT RSTRN 11 T
= - ACTION_UNIT REF 12 v
- PROVIDER 3 T
53 BASE_STOCK 4 i
% ACTION_UNIT 5 1 &
* PROPORT 5 i
5 CURPOS 7 z
%= ENT_GROUP. 8 2
- 3 ASSIGNED 19 1
5 POOL 0 i 5
3 SCHED 21 1
% STOCK_SPEC 22 1
= 5 23 1 3
5 CURRENCY_BUMDLE 24 J 2
1 INSTR. 25 1 HBEE BE A
> ENT 26 1 2 2]z
5 INVESTMENT FEES 27 z
5 ACTION_FIN 28 1 z | E
= PROD 23 T Tz
-3 PLACE 30 1 2
3 PURCHASE 31 0 =
" ERRORCOND T 1 B B
= SHAREHOLDER 33 1 £l
7 COUNTRY. 34 i 1
£ INVESTMENT k5 . = EED

Tm =Q=
Product Development -
Technische Universitat Minchen

9th International DSM Conference 2007- 17

IN COOPERATION WITH BMW GRroup

Summary: Testing the Big Picture View

«® Specify the big picture view using DSMs - approach allows you to represent
massive systems

#® Formalize design intent so you can test architectural erosion
:® Easy to adopt—Use it at any stage

of the lifecycle
¥ Use the knowledge of the architecture to improve your testing

Tum =Q=
Product Development :
Technische Universitat Minchen

9th International DSM Conference 2007- 18

382

