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Managing Design Data: The Five Dimensions of
CAD Frameworks, Configuration Management,
and Product Data Management

An introduction to the paper by van den Hamer and Lepoeter

The field of Design Data Management is faced with many
complexities: designers have more files to contend with, de-
sign processes are increasingly complex, data updates occur
more frequently, and computer-driven product development
has proliferated the quantity of informaticn to be managed.

Many names fall under the rubrc of Design Data Man-
agement: CAD Frameworks, Configuration Management.
Product Data Management, Design Management, and Engi-
neering Data Management. Such variety has problematized
the analysis of requirements, solutions, and tefminology.

In the effort to find common ground, this paper offers
a frame of reference, a fiye-dimensional model for Design
Data Management. The dimensions are as follows: Ver-
sions. Views, Hierarchy, '{Sl:atus. and Variants. The model
proposed in this paper will assist designers in analyzing
user requirements, discussing alternatives, and classifving
available support tools.

Since design usualiy occurs in steps, processes are usuaily
iterative, and the result of each iteration can be looked at
as a "version” of the design information. At its simplest,
versioning is an automatic and transparent backup mecha-
nism; however, actually implementing versioning is more
difficult since CAD tools and operating svstems have been
built without versioning in mind. Two models for version-
ing are diagrammed: 1) versions as a numbered sequence
of intermediate results, and 2) a version tree model that
sequences and also tracks how new versions are created.

As many products are too complicated to depict in any
single representation, it is necessary to look at them from
multiple *“views.” In this moedel. the View dimension is
linked to the development process steps by which the views
are derived from other views, either by automatic or manual
transformations.

Another commeon method for managing complex designs
is to break the design into smaller parts, which leads us to
the third dimension: Hierarchy. Two hierarchical paradigms

are diagrammed: a nested physical structure and an abstract
treelike graph. '

The Status dimension of design is used to manage quality,
consistency, functionality, reliability. and safety. Common
instances of the status dimension would be verification steps
and validation steps.

The Variants dimension occurs when more than one
flavor of a product is needed. While such vadants tend
to be quite similar. they are not identical, and thus reguire
management of both their common and different features.
This dimension is the least understiood of the five, and is
geiiing more attention of late,

The five-dimensional model is simple at face value,
but becomes more powerful when we realize that all
dimensions are relevant for any of the design disciplines:
mechanical design, circuit board design, IC design, software
design, svstem design, and muitimedia contents design.
Moreover, since the dimensions cover the basics of the
design process. they can be used for analvzing the very
processes themselves,

Usually, it is necessary to analyze a design process using
several of the dimensions simultaneousiv, which unieashes
powertul capabilities for real-world design managsment.
although multidimensional combinations are difficult to
explain, configure, and operate, especially in the field of
CAD Frameworks. Several combinations of dimensions are
discussed in the paper: Versions + Hierarchy (inciuding
a comparson of static and dynamic hierarchy models);
Hierarchy + Views (including a comparison of the level-
by-level model with the nonisomorphic hierarchies model);
and Versions + Views (data-centric and roadmap models).

In practice, Design Dara Management requires three or
more dimensicns, and it becomes necessary to prioritize
dimensions, since no more than two 1 three of them can
be handled consistently with current tools. For software
configuration management systems. Version, Status and
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. Hierarchical product structures, simple Design Views, and

Variant dimensions are critical. CAD Frameworks for elec-
trical design must support multiple Views and Hierarchical
design and, increasingly, Status and Versions. Electronic
archiving systems need to accommodate multiple Versions,

Status. In general, the Varants dimension is slowly emerg-
el

r,._._.-h_.

ing as a priority across disciplines.

The authors situate their work within previcusly pub-
lished results on data management moedelling. The only
application areas that have any significant record of such
research are software engineering and electronic (VLSI)
CAD.

—Jim Esch
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- Managing Design Data: The Five Dimensions of
~ CAD Frameworks, Configuration Management,
and Product Data Management

PETER VAN DEN HAMER aND KEES LEPOETER

With the increasing complexiry of designs, Design Data Manage-
ment is regarded as a key enabling rechnology 1o achieve higher
efficiency in the development of complex products, However, this
technology has proven to be surprisingly complex. Commercial
solutions in the area of CAD Frameworks, Produet Data Manage-
ment, and Configurarion Management Systems currently only solve
parts of the total problem, and the acceptance of these systems in
industry is still relatively Igw,

In this paper, a model is presented which can be used as a frame
of reference for the general problem of managing design dasa. The
model distinguishes between five orthogonal dimensions, which
are each, when considered separately, guite simple, In pracrice,
however, nwo or more dimensions must be handled simultanegusly
1o solve real-world problems. This wms out to be nontrivial
because multiple fundamentally different solutions exist for each
combination of rwo or more dimensions.

We beligve thar this 5-D frame of reference can conrribute io
the creation of berter qualiry solutions in the area of Design Dara
Management. The 3-D model can aiso help 1o explain the familiar
Pphenomenon that a solution which has, for example, proven ro be
adequare for sofrware development may be refected by integrated
circuit designers, and vice versa.

. INTRODUCTION

The rapid proliferation of computers in the field of prod-
uct development has lead to a sizeable amount of electronic
design information which needs to be managed. The field
of Design Data Management has proven to be surprisingly
complex for a variety of reasons: the increasing number
of files which designers have to deal with, the steadily

. In¢reasing complexity of the design processes and the high

rate at which design data tends 1o be updated. In addition,
some development organizations have started regarding
Design Data Management as a key enabling technology
10 achieve better development efficiency, throughput time
reduction and other design process-related business goals.
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There are many synonvms for the term “Design Data
Management.” Each application field has its own names for
it: CAD Frameworks (ECAD), Configuration Management
(software, systemn), Product Data Management (mechani-
cal design, system design), Design Management (ECAD),
and Engineering Data Management (certain design dara
management products).

In the past 15 years. many ideas and concepts have
been presented in the literature,’ usually embedded within
a description of the author's novel software system for
managing design data. In contrast, there have been few
publications about the basic nature of the problem itself,
how the requirements differ across the different design
disciplines or, ways of systemnatically evaluating available
solutions with regard to user needs. Discussions on this
level are partly hampered by the relative isolation of some
of these disciplines, but also by the lack of 2 common termi-
nology for basic notions—even within a single discipline.

This paper aims to present a frame of reference for the
general Design Data Management problem. We present
a model which distinguishes berween five orthogonal di-
mensions which are in our view fundamenta! 1o Design
Data Management. This 5-D modei is based on-the expe-
rience of our respective groups within Philips in managing
design data within ECAD, sofiware development, end-
product/system development and mechanical CAD. In its
current form, the model is roughly five vears old. In this
period, it served as a tool for analysing Design Data
Management issues. It is worth noting that these five
dimensions can also be used for modeling design processes
themselves (see Appendix A).

II. THE FIVE DIMENSIONS OF DESIGN
DATA MANAGEMENT

In this section, we will introduce what we call “the
five dimensions of Design Data Management.” These five
dimensions, when considered separately, are each quite sim-
ple: developers in any particular discipline will recognize
most, if not all, of them as issues which complicate the

TRelevant references are presented in the next sections.
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design process and its designs. Familiar solutiors for han-
dling each of these dimensions are described. We thus do
not claim that the dimensions themselves are new. In fact.

“inventing new dimensions would be like claiming to have

discovered a new major design problem which designers
have never noticed before.

A. The Version Dimension

Designers typically modify design information in mul-
tiple steps. Each step results in a new version of the
design information. Sometimes a designer needs these
steps to add functionality in a controlled way, e.g., when
creating a complicated design from scratch. In other cases,
versions correspond to the steps which the designer takes
in cormrecting mistakes (e.g., debugging) or in optimizing
the design (i.e., minimizing the size of a chip). In all cases,
however, 2 new version is created because the designer
wants to modify the design.

In operating systems like UNIX or MS-DOS, newer
versions of design files simply ovenwrite previous versions.
This overwriting of the previous version can be a problem
because a new version may later tum out to be a step
backward instead of a step forward: the seemingly good
idea may not be so good after all. Aliematively, the designer
may have inadvertently ruined parts of the design without
knowing it, and may thus need an earlier copy of the design
corresponding to the state of the work directly before the
accident.

Because designers need the ability to go back to the
previous versions, and few operating systems have this ca-
pability, CAD Frameworks provide this functionality. In its
simplest form, this versioning functionality can be regarded
as an automatic and transparent backup mechanism. Tt has
also been suggested that the availability of versions tends
w0 promote an exploratory design style in much the same
way that an “undo™ function in an editing tool reduces the
threshoid to perform a tricky operation,

Implementing design versioning is technically rather
tricky because both the CAD tools and the undertying
operating system were developed without versioning in
mird. In practice, versioning is thus implemented by
various combinations of intercepting read/write accesses
by the CAD tools and by moving/renaming files before
and after tool read/write operations. Such techniques are
known as tool encapsularion (where the functionality is
added in a so-called “wrapper”) or integration (where the
tool itself is modified). It is worth noting that this problem
is only fully tackled in CAD Frameworks; in software
configuration management systems or electronic archives,
the designers typically work on a nonversioned copy of the
data files which is kept separate from the versioned copies
stored in the archive.

Fig. | shows a schematic representation of two common
models for design versioning. In diagram (a), versions
are simply a numbered sequence of intermediate design
resuits. This technique is encountered in many software
configuration management and archive-like products. A
disadvantage of this model is that the version numbers
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Fig. 1. Design versions correspond to updates made to the desizn.
really serve two different purposes: on the one hand, the
numbers record that version 6 was submitted directly after
version 5, but on the other hand the numbers suggest that
version 6 was created by modifying version 5.

Unfortunately these two aspects, time sequence and mod-
ification history, do not always coincide. In (b}, version
6 was actually created by backtracking to version 2 and
creating a new modification. As illustrated by this example.
the version tree model thus also keeps track of the way in
which new versions are created. Version trees are supported
by several CAD Frameworks and some advanced soft-
ware configuration management systems and are typically
displayed graphically in the user interface.

We will conclude this overview of versioning with a
few examples to illustrate its practical importance in data
management:

1) Designs which are released and have found their way
io customers. The design data for these products must
remain available for many vears after termination of
production due to service and legal liability require-
ments. In this period many new versions will typically
have been created.

2) Software products typically go through so many changes

that they get a two-level update identification: one level
corresponds to changes in the product’s functionality
(e.g., new manual required) and one corresponding 1w
internal improvements (e.g., bug fixes).
Philips uses a comparabie two-level version identifica-
tion scheme for change management of consolidated
product information: a 12-digit article code is updated
whenever the “form, fit or function” of the design
changes, and a secondarv identification (tvpically a
date) is used for manufacturing changes which do not
normally affect the usage of the product

3

e

B. The Views Dimension

Many products are simply t0o complex to represent in
only one single tvpe of represeniation or diagram and are
thus often described at multiple levels of abstraction or
Yviews.” A pew electrical development project starts by
making a “view” with a high-level description of the design
and. after this has been analysed, discussed, and optimized.
proceeds to a lower level of abstraction with greater derail.

b
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Fig. 2. Design views represent different aspecis of the same
design.

An example: the classical electronic design process in-
volves 1) the creation of electrical schematic, 2) the creation
of a layout diagram, and 3) finally the generation of the
data needed for production. Centemporary electronic design
processes can also include various other views such as high-
level functional descriptions of the design (e.g., VHDL for
digital design), simulated waveforms generated to validate
the design and test patterns needed for product testing
during manefacturing.

In our 5-D model. the view concept is inseparably linked
10 the development process steps by which the views are
derived from other views. Such steps can range from
fully automatic transformations (e.g., compilation, format
conversion, simulation) to steps in which the input views
are ‘manually’ transformed into derived views.

Thus the view concept is ciosely related to the semantics
of derivarion and (intended) equivalence.® Some common
ways of representing which views belong together are
shown in Fig. 2: 1) corresponding views are sometimes
grouped into a directory (common in electrical design), 2)
corresponding views can have related file names (common
in software), and 3) one can directly log the design activities
by which the various design views were derived from one
another (used in advanced CAD Frameworks).

The view dimension of Design Data Management is
especiaily important when the transformations needed to
generate the views cannot be done fully automatically:
regeneration of a missing view is costly and error-prone.

Examples: in classical software development processes,
only the source view is carefully managed because com-
pilation and linking can be readily repeated. In electrical
design, on the other hand, there are multiple views which
contain unique information (e.g., schematics versus layout)
whereby some of the views (notably simulation resuits)
require lengthy computations to recreate.

*By “(intended) equivaience.” we mean that the views correspond to
the same design, Although the views contain overiapping information,
this does not npecessarily mean that one view can be derived from the
other by a transformation (= both views contain the same informaticn),
The equivalence is “intended” rather than guaranteed simply because a

derivation step may not have been carried out perfectly. See also the
Status dimension.

Hierarchy
g ~

* Examples: subassemblies, modules,
cells, subsystemns

» Process: subtasks, reuse

* Semantics: consists of
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Fig. 3. Design hierarchy is used in most design disciplines 1o
manage design complexity and promote reuse of subdesigns.

—

From a data management perspective, the problem with
having multiple views of a design is knowing for certain
which views belong together and which don't. If this
information is lost or unreliable, the views themselves
loose their value. The related data management probiem
of identifying a view's type and detailed format can be
solved by simply recording this information in a more or
less standardized way (e.g., an electrical netlist in EDIF
2.0.0 formar).

C. The Hierarchy Dimension

In the previous subsection, we noted that complex design
processes can be made more manageable by using multiple
steps, thus introducing multiple design views. The second
commonly used technique is to decompose a design into
smaller parts. This process can be repeated until the activi-
ties and their deliverables have become manageable. From
a data management perspective, this means that the design
data has a hierarchical structure.

Hierarchical design is encountered in most design disci-
plines: complex electrical schematics contain blocks (cells’
and ‘symbols’} whose internal structure is recorded in
a separate schematic. Mechanical designs are- created as
a hierarchy of assemblies. subassemblies, and parts. In
standard software design, decomposition (into modules.
objects, and/or functions) is the main weapon one has
to combat complexity because software developers rely
primarily on a single view of iheir design.

Fig. 3 shows two equivalent paradigms commonly used
1o represent design hierarchy: 1) a representation in which
the nested physical structure is shown directly, and 2) a
more abstract graph® representing the design’s decomposi-
tion.

[t is worth noting that design decomposition has an
additional benefit: if a design component has a well defined
functionality and interface. it can be reused in different parts
of the design or across multiple projects. This is a major
issue in all design disciplines: increasing productivity and

3The reuse of components (se¢ next paragraph) means that such
structures are formally directed acyclic graphs rather than trees. If a design
consists of muliiple identical subdesigns. these subdesigns are the same
‘node’ from an information management perspective.
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reliability through the reuse of standard physical modules

or through the reuse of abstract designs (e.g., macrocells
in IC design).

D. The Starus Dimension

In a design environment, the information which is stable,
consolidated, and proven is treated differently from infor-
mation which is tentative, untested, and possibly incorrect.
In a sense, the primary goals of a design process are
to provide all the required product-describing information
{completeness), but also to ensure that the information
is fit for use (quality): the design should be consistent,
satisfy the basic requirements (e.g., functionality, reliability,
safety), and be an intelligent tradeoff between the various
other design goals (e.g., manufacturing cost, ease of use,
development cost, environmental aspects, time-to-market).

The status dimension of design corresponds to the organi-
zational procedures used to maximize the likelihood that the
design is satisfactory. Familiar examples of such procedures
are the introduction of verification steps (e.g., electrical
simulation) and validation steps (e.g., field testing) and
approval procedures (releasing). When design information
passes such a step. this results in a change in starus. The
change in staius does not correspond to any change in
the information itself; it onlv represents the fact that the
organization has decided that the information meets certain
requirements.

Note that status tracking is used 1o determine what can
or should be done with the design. The most familiar
example is the design status change which corresponds io
the decision that the design can be taken into production
and shipped to customers.

Status changes are aiso used 10 control the subprocesses
within the development organization itself. Some examples:

* A design may get a different starus if the development

teamn feels that the design is good enough to be
submitted to an internal quality assurance department
or can be used as input for a different part of the
organization. -

* AnIC design goes through one or more status changes

before a costly production run is made.

¢ Software designs go through alpha and beta testing

(testing by close partners) before the product is re-
leased to the acwal market.

Fig. 4 shows two common paradigms used for represent-
ing design status changes. Model (a) shows an example
of a state transition diagram where the arrows indicate
the possible transitions between states. Model (b) shows
a paradigm known as workspaces or environments where
the arrows also indicate possible transitions.® Characteristic
properties of the workspace paradigm are that the levels are
related to the way in which the project is organized (e.g.,
“private,” “project,” and “public” levels) and the direct
link between an item’s siatus level and the persons in the
organization for which it is visible or accessible. Thus items

Note that in such diagrams the poteatial transitions down to tower
levels are generally not shown.
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Fig. 4. Design states is an indicator of the degree of maturity
of design data and plays an important roie in organizational
procedures.

at the private level are oniv available for the individual
developers who created these irems. while itlems at the
project level are available to zll members of the project
team.

Apart from the organizational importance of the status
dimension, it can play a major factor in the design of
a data management system if a change in status results
in a change in date visibility for certain groups of users,
Example: in some systams, the data ‘stored’ in a designer’s
private workspace is not visible or accessible to others in
the same project. When this data is promoted to a higher
level, it suddenly becomes available for use. Although
this functionality is in iself reasonable, the workspace
paradigm makes the resulting behavior of the supporting
data management system significantly more complex.

E. The Variants Dimension

The fifth dimension of Design Data Management occurs
in cases where more than one variant of a particular product
needs to be designed. The issue here is that these different
variants are to a large degree similar, but not identical. This
leads to the need to explicitly manage their commonality
as well as their differences. Some examples:

« Most software packages which are not specifically
developed for one particular customer tvpicatly have
several varants due to the diversity of the iarget
environments in which they must operate: different op-
erating systems and different user interface standards.

* Products like automobiles are manufaciured in differ-
ent variants due to the required commercial diversity
(see Fig. 5). In fact, a car owner will seldom see a car
on the road which is identical in all respects.

« Consumer products like television sets are also manu-
factured in many different variants because of varving
price and performance levels. but also because of
regional technical differences (e.g., in broadcasting
standards).

The approaches taken to handle design variants vary widely
per design discipline: in software, multiple “target plat-
forms” are a fact of life while in integrated circuit design.
a new design variant is often regarded simply as a new
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Fig. 5. Design variants are imponant if a product is a member
of a family of similar products.

design project in which data and expertise generated in a
previous project can be reused. It is our impression that
this dimension is the least understood of the five, and is
currently gaining momenturm.

It 13 noted that variants and versions are often confused
with each other. Sometimes pzople use the term *‘version”
to represent a preduct variant, as in “the version of MS
Word for Windows 957 or “a CMOS version of the 8051
processor.” We will use the word *version™ when we refer
to design evolution, and “variant” when we refer to the
development of families of related products. The orthogo-
nality of the two concepts from mathematical perspective
has been pointed out by Wedekind {1].

ITI. DpMENSION MAaNIA?

Now that we have finished introdecing the five dimen-
sions, it is worth reflecting on whether it is indeed justified
to call these five items ‘dimensions,” or whether this is
actually only an arbitrary list of issues related o Design
Data Management which can be arbitrarily abridged or
exrended.

First some observations:

+ The five items are relevant for any particular design
discipline—at least we have found this to be the case
for the design disciplines encouniered within Philips:
mechanical design, circuit board design, IC design.
software design, systern design. and even multimedia
“contents” design. Although the relative importance of
items differs between design disciplines, the items stiil
appear to be meaningful in each of these areas.

= The items describe the basics of the design process,
rather than aspects of a particular support tool or
support technology.

* An analysis of a design process or its data is over-
simplified unless one looks at several of these di-
mensions simultaneously. Truly meaningfui statements
about a design process or method for managing design
data must involve two or more dimensions. This is
analogous to explaining where to find a room in
a building: one needs to know the location in all
dimensions (which floor, which hallway, which door;
see Appendix C).

16

*+ One can obviously wonder whether there will be new
dimensions added to the Yist in the future. All we can
say is that the number of items on our list has been
stable for several years. so that we would be surprised
if we suddeniy came across a handful of new design
issues of a comparably fundamental namre,

In summary, the term “dimension™ stresses the orthog-
onality of these five design data management aspects and
emphasizes the complexity of real world problems which
typically involve three or more key dimensions. A com-
parison of the nature of these dimensions to the familiar
geometrical dimensions can be found in Appendix C,
“Navigating the five dimensions.” Appendix B, “Inferma-
tion modeling for data management,” deals with a formal
method for representing multidimensional design data man-
agement solutions.

The remainder of this article deals with the nature of the
interaction between dimensions and should help the reader
understand how the 3-D model can be applied in analyzing
design data management problems.

IV. 2-D Data MANAGEMENT MODELS

We will devote this section to illustrating the nature
of the inreraction between the dimensions. An underlying
message behind all these examples is that. although each
dimension taken separately may seem trivial from a concep-
tual point of view, the interaction between the dimensions
makes real-world Design Data Management and Design
Process Modeling nontrivial.

In generzl, in sitvations where one must deal with twe or
rmore dimensions, ong can select from multiple alternative
solutions. Each of these solutions has its own characteristics
and not every solution is equally suited for a particular
design process.

A. Versions and Hierarchy

Consider what happens if one has a hierarchical design
{see Fig. 3) and needs 10 provide versioning (Fig. 1}. To
simplify the discussion, we will call the various levels
assemblies (top), subassernblies {interrnediate}, and com-
ponents (bottom).

As soon as one staris keeping track of versions of
assemblies and subassemblies, one is confronted with the
fact that a new version of a (sub)assembly may have a
different composition than its predecessor. This is in fact
a common phenomenon: designs can be split up as they
evolve, components which were initially left out need 1o
be added, and initiaily chosen elerments can be replaced by
other elements. There are two models commonly used to
record hierarchies of versioned items.

In Fig. 6(a), the small circles are item versions which in
turn cansist of versions of lower level items. This approach
implies that a particular version of an assembly is sraric
in the sense that its composition is fixed to the last detail.
This is because the exact versions of all its subassemblies
are fixed and the exact versions of all components within
these subassemblies are also fixed. Consequently, if one
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Fig. 6. To manage versioned hierarchical designs, one can choose
between keeping track of ‘static’ or ‘dynamic’ design hicrarchies,

component in the design gets updated, a new version of
the corresponding subassembly must be introduced which
contains the updated component. Similarly a new version of
the assembly must be introduced which contains the new
version of the subassembty.

Thus an advantage of the static hierarchy model is that
the components within a particular assembly version are
100% fixed: there is no uncertainty about which compo-
nents befong in a current or a previous design version. The
price one has to pay for this high degree of clarity is that
€Ven a very minor change which needs to be incorporated
into the design (e.g., a resistor bought from a different
supplier) reguires the creation of a new version of the total
design (e.g., a large system). Although it is possible to
largely automate this process, it tvpically results in numer-
ous versions at the upper levels of the design hierarchy.

Another problem with the approach shown in Fig, 6(a) is
that a design must contain references to specific versions of
its parts. CAD tocls do not traditionally have this capability
because most operating systems® simply do not support
versions of files. Thus static hierarchies require significant
effort to implement because one has to ‘work against’ the
operating systerm. -

Fig. 6(b) shows a subtly different model for represemmv
hierarchies of versioned objects. Here the assembly versions
do not contain a reference 10 ome specific version of a
subassembly, but instead refer to the subassembly withour
reference to a particular version.

In order to fill in the missing details, a rule or algorithm
is needed to determine which versions of the subassemblies
to use when one needs access to a particular assembly
version and all its subassemblies and components. This
rule is normally: “Use the most recent item version when
one needs to get the current version of the assembly.” An
old version of the assembly can be retrieved by making
inielligent guesses based on version creation dates.

The advantage of this dyvnamic hierarchy model is that
minor changes can be made to lower levels in the hierarchy
without affecting the upper levels. The disadvantage of this
approach js that if one needs to know the exact composition

3Digital’s VAX/VMS is the only major operating system with builr-in
support for versioning.

of an old version of a design. one can only give an
approximate answer. This can be a major disadvaniage
if one has strict traceability requirements in an archivi ing
system.

It can give even greater problems in a work-in-progress
environment: if a user is debugging version N of desizn X,
one can get nasty surprises. This happens when another user
makes a change at a lower level, thereby changing the actual
contents of version N of design X without changing its
identification. This can be a serious problem when testing
software or when simulating complex electrical designs.
Consequently IC designers, for example, often prefer static
hierarchies in a multiuser CAD Framework: a design will
never change without notice due to ‘improvement’ made by
a colleague! It is worth noting that most commercial CAD
Frameworks currently still provide dynamic hierarchies.

Some organizations (including Philips) use a subtle vari-
ation of dynamic hierarchies to manage consolidated® prod-
uct information. In this varjation (known as Techniczl
Produet Documentation or TPD within Philips), a two-level
item versioning scheme is used. When an itemn at the bottom
of the hierarchy tree is updated. and must therefore get
a new identification, the designer must indicate whether
the change is relevant for higher levels in the hierarchy. If
relevant, the high-level part of the changed item’s version
identification changes. effectively creating a new item. If
it is not relevant for upper levels, the item simply gets a
new low-level version identification which is transparent
to higher levels in the product suucture. The advantage
of this technique is that it allows changes to propagate up
through the hierarchy tree for precisely the amount of levels
which are relevant, Example: a new version of a read-only
memory (ROM) chip may be relevant for the developers
of the circuit board for which it is intended, but may not
change the external specifications of the circuit board and
thus will not affect the svstem dasign level,

It is worth noting that the interaction between versioning
and hierarchy also occurs in manufacturing control systems
(e.g., MRP 11 logistics systems). Versioning and hierarchy
are, respectively, associated with “effectivity ‘dates” and
“Bills of Material.” Such systems use implementations
which are functionally similar to the static hierarchy model
because their stock control algorithms require precise pre-
dictions about which components will be used on a certain
date.

In the various design disciplines, it is especially the
ECAD area where the interaction of versions and hierarchy
is considered very important. The difference between the
static and dynamic hierarchy models is stressed in [2]
and [3] (and in earlier papers by Katz as well), CAD
Frameworks that support the static hierarchy model are
e.g., Powerframe [4). Nelsis [5]. and JESSI COMMON
FRAMEWORK (6]. Cadence’s Design Framework II {7].
and several other frameworks from CAD vendors, support
the dynamic hierarchy model.

Note that designess do not work directly on copies of the dafa in
the archiving sysiem. In this way the “unexpecied change” problem of
dynamic hicrarchies is avoided.
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development projects [6], it has been proposed to combine
the level-by-level and nonisomorphic hierarchies models in
which the former is primarily used for the upper levels
(system design) and the latter is used for the lower levels
{detailed design). It is debatable whether this level of end-
user complexity is desirable.

The nonisomerphic hierarchies model is supported by
most CAD Frameworks, like Nelsis [3] and Cadence's
Design Framework 1I [7]. Also. papers by Katz {31 stress
that this model is preferred when managing IC design data.

C. Versions and Views

Fig. 9 shows a simple electronic design process involving
three different views of a design. A schematic view is used
as the basis for the layour view and the layout view is
used to automatically generate the mask files needed for
manufacturing.

On the right-hand side of Fig. 9. actual data sets are
shown. Thus, for example, the schematic view of design

“—7oobar exists in three versions and the Javout view exists

S

in four versions. The thin arrows indicate which layout
versions correspond to which schematic versions. As in
Fig. 2(c), these arrows thus correspond to derivation re-
lationships or (intended) equivalence.

In this model, what we call the darg-centric model,
every derived view should belong to at most one source
view. This assumes that every siep in the design process
requires only one input data set. The model can be readily
extended for design steps which require multiple inputs
or which create multiple outputs. Example: every mask
version should belong to one lavout version and every
layout version shouid belong 10 one schematic version. On
the other hand, each view version can have an arbitrary
number of derived versions.

The purpose of these derivation relationships is to in-
dicate that a derived view was meant to be equivalent to
an existing view. Sometimes the derivation is performed
fully automatically. Sometimes the derivation is done more
or less manually. Sometimes a small change in the source
file means that the previous derived file is ignored and a
new derived file is made (comparable to compilation of
software). Sometimes a small change in the source file
means editing’ the derived file to accommodate the change.

The data-centric model for combining versions and mul-
tiple views is supported in most current CAD Frameworks
[4]. [9]. It is important to realize that, although shown in
Fig. 9. the information about the design process is implicit
from the perspective of the CAD) Framework. Either the
framework does not know about the structure of rhe design
process which it is supporting. or it does not actively use
this information to achieve its functionality.

An alternative, and in many cases superior approach to
handling versions and views called the Roadmap model
[10] is shown in Fig. 10. As in Fig. 9, the rounded boxes
represent design process steps. and their interconnections
represent the flow of data between these steps.

Unlike the previcus model, a framework incorperating
the Roadinap model is explicitly aware of design process
“road maps” or "flows” which designers are executing.
Each design step thus results in a different design view
type—even if two different design steps happen to produce
information of the same type and using the same storage
format. This allows the CAD Framework to know, for
example, that an electrical netlist derived from a schematic

7 Although this editing is not shown in the diagram, information
abour the edit history could be recorded in the sysiem.We recommend
distinguishing between transformation information (‘derivation links') and

modification information (‘editing links') because the two have different
semantics and are governed by different rules.
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adaition, there 1 o sirong traginon of hierarchical
design in managing software: a product is built us-
ing files and what is inside the files is unknown to
the configuration management system. Consequently,
software configuration management systems tend to
concentrate on the Version and Status dimensions, A
small (and possibly growing) number of systems also
provide some support for Variants {e.g., for multiplat-
form products).

* CAD Frameworks for electrical design must support
multiple Views and Hierarchical design, because these
dimensions are essential for the electrical design
process. There has been support for multiple Versions
for a few years. Variants are presently not given a high
priority. The importance of Status appears to be rapidly
increasing. For example, a software system made at
Philips Research [13] provides a circuit simulation
environment with support for Versions, Hierarchy and
Status.,

* Electronic archiving systems, or Product Data Manage-
ment (PDM) systems. must be able to handle multiple
Versions (because this is where historical information
is maintained) and Hierarchical product structures (be-
cause of reusable subsystems). Design Views are often
handled in a simple way (e.g., an exira document type

.  Auribute) without recording the derivation information,

etc. Status is also important because archives play a
formal role in product releasing. Support for Variants
is only just emerging, partly driven by the recemt
interest in product variants {“features and options™) in
manufacturing control svstems.

At present, there are virtuallv no data management mod-
els which cover three or more dimensions in an elegant (i.e..
gasy to use) way. Often the support for a certain dimension
is weak or was apparently tacked onto an existing data
management tool when the need for the dimension became
apparent.

One fundamental difficulty in designing good multidi-
mensional models is that solutions are closely refated to
the structure of the target design process (sec Appendix
A). We thus do not believe that it is possible to provide a
single multidimensional solution which is well suited for
a wide range of disciplines. We therefore predict that a
2o00d solution for one application area (e.g., IC design) will
o significantly less “natural” for other disciplines (e.g.,
software development).

Another fundamental difficulty in creating multdimen-
sional sojutions is that. in order to achieve good user
acceptance, the underlying model must closely maich the
way designers think about their data. In particular in a
multiview environment {e.g.. elecirical design), designers
strongly relate the swucture of the design data to the
structure of the design process or “flow.” This implies
that the concepts emploved in the user interface of such
a design data management systermn must closely refiect the
structure of the designer's specific design process. This
in tun means that vendors of e.g., CAD Frameworks
must choose between providing a software toolkit which

needs considerable tailoring to match the target design
process, or must previde a flexible system which can

be customized using 2 formal high-level design process
description [10]-[12].

V1. DISCussSION ON DATA MANAGEMENT
MODELING IN LITERATURE

In this section we will place our work in the context of
previously published results on data management modeling,
Although numerous publications have been written which
deal with design data management, the majority of these de-
scribe a software system intended to solve data management
problems in a particular application area. In this overview
we will concentrate on those publications which deal with
the basic Design Data Management problems as well as
those which discuss the problems in a broader context than
one application area,

‘Interestingly, thers are oniy two application areas which
have a significant tradition in data management research and
literature, viz., software engineering, and eiectronic (VLSD

.CAD. This is not because the other areas “do” iess daia

management or that data management is considered less
important in the other areas. It simply means that in the
other areas. selecting or designing a software system for
data management is considered to be similar to buving or
making software for any other sk (e.g., selecting a text
editor) and is seldom associated with compiex, fundamentai
problems which have, to date, only partly been solved.

Data management has the longest tradition in software
engineering. Seftware configuraiion management (CM) sys-
tems have been around for about 15 years now. A classic
book on CM is {14], describing a.o. “configuration manage-
ment” and version control, which are two of our five daa
management dimensions.” Early systerns around 1980, like
make and SCCS more or less cover these two dimensions
independently, using a relatively simple model.

A more advanced model is implemented in DSEE. which
is Apollo’s DOMATIN Software Engineering Environment,
This systemn covers versions. configurations, and siatus,
three of our dimensions. The paper of Leblang and Chase
{151 is one of the few papers from the software engineering
domain which has influenced the electironic CAD domain.

Several recent papers and books [16]-[20] recognize
the wide spectrum of Configuration Management. In {20]
Fowler states:

“From the literature there does not at present appear

10 be a universally agreed formula defining an exact

madel for configuration management. ... In practce,

different models will be developed depending on the
specific requirements of a given sitwation.”

This is very similar to one of our own conclusions.
One of the first papers on data management modeling
in electronic CAD is [2]. The focus of that paper is on

?In (14) the term “configuration management™ means keeping track of
what parts a product is composed of, and thus corresponds to our design
hierarchy dimension. Note that, however. hierarchy support in software is
generally fimited to a single level decompesition of the system into source
files.
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Table 2 Data Aspeets and Process Aspects
of the Five Dimensions

Design DATA Aspact
1} Design versions

Cormresponding Design PROCESS Aspect
Design iterations

2) Design views
3) Design hierarchy
43 Design status

Design steps

Subprojects

Design approval and releasing
Developmem of families of reiated products

5) Design variants

version modeling. Batory and Kim claim that managing
versions is relatively complex because, apart from the
versions themselves, several other aspects {dimensions, as
we call them) play a role. For example, the concept of
parameterized versions in [2] deals with the role of versions
in dynamic hierarchies.

A wterial paper on moedeling in electronic CAD [3]
presents “a version model based on three orthogonal rela-
tionships™: versioning. design hierarchy, and design views.
Furthermore, Katz's ideas on workspaces are a first step
o cover the status dimension. Surprisingly Katz considers
the entire model “a version rodel,” even though versioning
is only cne of the three kev ingredients. In [3]. Katz also
includes an extensive comparison with other papers.

Van der Wolf [21] presents a good overview of the
information architecture of a CAD Framework. In fact, Van
der Wolf recognizes the important interplay between the
Versioning, Hierarchy, and Equivalence (between design
views) relationships. The book also presents an extensive
literature overview,

VII. CONCLUSIONS

Design Data Management and its close relative, Design
Process Management, are still relatively young fields. There
is a notable lack of common terminclogy and, more signif-
tcantly, a lack of agreement about what the main issues are
and how to tackle them.

In this article, we have presented a model for analysing
Design Data Management problems which has been used
within Philips for several vears. It serves as a tooi with
which to analyze user requirements. discuss basic alter-
natives and classify available sofiware support tools. The
central ingredient of this reference model is that data
management issues involve five orthogonal dimensions. The
list of dimensions appears to satisfy a wide range of design
disciplines and can be expressed in both data management
as well as in process management terms. This is highlighted
in Table 2.

A product development environment almost always in-
volves more than one of these dimensions simultaneously,
In fact, the increasing complexity of design processes
necessitates paying attention to increasingly large subsets
of this list. An ideal Design Data Management product
would cover the dimensions which are most prominent in
any particular environment using a simple and consistent
model.

When taken separately, the user requirements for each of
these dimensions can be readily satisfied using relatively
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straightforward and well known design data management
and design process management techniques, Unfortunately
the nature of the interaction between the dimensions is such
that combining muitiple 1-D solutions (e.g., versions and
hierarchy} is never straightforward,

Underestimation of this problem has led to a generation

of Design Data Management products whose models and

basic principles are typically hard to explain and thus
difficult to configure and operate. The problem is larger in
CAD Frameworks than in produets intended for managing
relatively consolidated information (archive-like products).
This is because work-in-progress involves tracking more
information, with a greater level of detail, and requires a
higher level of user friendliness: the system is used by many
users on a daily basis. '

Although various reasonable 2-D solutions have been
devised, each solution incorporates different assumptions
about the target development process. In other words, the
tvpe of product being developed and the process by which
it is designed will largely determine the suitability of a
particular Data Management solution or tool.

Unfortunately, because this is a relatively young field,
neither the vendors of data management tools nor their
customers appear to be sufficiently aware of the alternatives
and the tradeoffs. The main use of this 3-D model may thus
be to contribute to this awareness by providing a frame
of reference. The frame of reference can then be used two
express the basic functionality of design data managemeni
tools as well as the basic needs of an organization.

APPENDIX A
DESIGN PROCESS MANAGEMENT AND
THE FIVE DDMENSIONS

In the main text. we have repeatedly stated that the
five dimensions are not only fundamental for Design Data
Management but can also serve as a tool to analyze Design
Process Management issues (see Table 2). This should not
come as a real surprise because dara forms the final and
intermediate deliverables of the design process so, for
any structural pattern which is trulv important for design
data. it is presumably worth knowing how that structure is
created within the development process. Taking this one
step further. one can surmise that any structure which
is considered imporiant in the design data can only be
truly important if 1t is a prerequisite for the chosen design
process.

Thus, for example, the ubiguitous use of design views
to describe design data ai different levels of abstraction
and different levels of detail is inextricably tied to the
fact that the design process is apparently organized into
relatively distinct stages of activity. Each stage contributes
to a particular type of information needed to fully describe
a satisfactory design.

Similarly, when complex products are represented as a
hierarchy of interrelated subdesigns, this raises the question
of how the process is organized which produces this hier-
archy of designs. In the case of a top-down design process
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{(as often practised in software engineering), the design
project spawns a hierarchy of subprojects or tasks, each
responsible for producing a particular subdesign. In other
cases (e.g., the design of a commodity-type computer),
=any of the subdesigns are created by specialized third-
. Tty manufacturers who supply that subsystem to mulitiple
customers. In such cases, the design activities may inore
closely resemble a collection of concurrent activities whose
plans are mutually coordinated by communication and
negotiation processes.

As our last 1-D example, consider the organizaticnal

implications of having to produce multiple product variants
(sometimes collectively known as a “product family” or
“product platform™). One methodology would be 0 develop
one particular variant first {e.g., the most complex one) and
then to derive the next variant from the original design. An
alternative methodology is to first develop a single generic
design which can then be use to generate the various design
variants in a relatively straightforward way. The geperic
design basically contains all the informaticn needed to
generate the specific design variants. Tvpical examples of
the latter approach can be found in software development
(e.g. #ifdef's handled by the C preprocessor) or mechanical
Azsign (parametric design).
"w AS in owr discussion of Design Dara Management, the
design process implications of muliiple dimensions can
be somewhat trickv and an analysis can reveal multiple
alternative methodologies which can handle any particu-
lar combination of dimensions. Some 2-D descriptions of
design processes can be found in Appendix C.

In our experience, classic techniques for modeling (de-
sign) processes do not have sufficiently rich semantics to
distinguish between such aiternative design methodologies.
Many notations or languages for modeling design processes
focus on decomposing the total process into smaller units
of activity and relating these activities to each other (mutual
dependencies and data flow) or to a time or miiestone axis.
In terms of our 5-D frame of reference, these notations
are suitable for emphasizing the Views dimension (and
sometimes the Status dimension). The notations provide
litle or ne grip on the other three dimensions. Further
work is needed to determine whether the five dimensions
an serve not only as a checklist of issues which a process
~~-nodel should cover, but also as a basis for new process
modeling formalisms, The latter appears to be promising
given the close tes between design process activities and
their data deliverables.

APPENDIX B
INFORMATION MODELING FOR DATA MANAGEMENT

As illustrated in the main text. one can communicate a
particular data management strategy by graphically depict-
_ ing sample data illustrating the intended structure. Such
" graphical examples are useful because they can be read-
ily understood by nonspecialisis. An alternative technique
known as information modeling is available which origi-
nated in the field of database design but has since spread
to other data intensive disciplines. Information models are

basically direct representations of the structure of dara.
Some information modeling notations are graphical (e.g.,
the entity/relationship model [22]) while others focus on
syntactic representations (e.g., the Express language [23]).

The benefits of using a good information modeling lan-
guage as compared to “defining by example” are

* Completeness: if something doesn't occur in the ex-

ample, it still might be legal.

+ Overview: an information model is much smaller than

a representative set of sample data.

» Unambiguity: the use of a standard notation is less

dependernt on the interpretations of individuals.
We will illustrate information modeling using a no-frills
European modeling language known as Xplain/OTO-D
[24]. Xplain is based on earlier work in the US on database
abstractions [25]. Xplain differs from other major informa-
tion modeling Janguages primarily in that a given structure
can generally be modeled in Xplain in only one way. This
property (“cbject relativity™) greatly simplifies the analvsis
and comparison of alternative models because differences in
model topology imply true specification differences rather
than arbitrary preferences in modeling style.

In Fig. 11, two alternative models for managing hierar-
chies of versioned designs from Fig. 6 are shown alongside
the corresponding information models. In the staric hierar-
chy solution (a), the ProductTypeEdition concept is defined
as the combination of a ProductType and an Edition-
Code. By definition, each ProductTypeEdition object thus
corresponds to exactly one ProductTvpe object. Each Pro-
ductType object can, on the other hand, have an arbi-
trary number of associated ProductTypeEdition objects.
The connections between circles in model {a) are named
PartsListLines in the information model. Each PartsListLine
object relates exactly one “assembly” ProduciTypeEdition
to exacdy one “component” ProductTvpeEdition.

In the dynamic hierarchy solution (b). in contrast, each
Partstistline object links one “assembly” ProductTypeEd-
ition to exactly one (unversioned) “component” -Product-
Type. This difference accounts for the dvnamic nature of
this selution.

Information models of full-scale design data management
solutions typically involve 10-20 key concepts (Xplain
object tvpes).

APPENDIX C
NAVIGATING THE FIVE DIMENSIONS

The five dimensions of Design Data Management can
be regarded as the information structures along which one
navigates in order to select or browse design data. In any
design process. one or more dimensions may be degeneraie
(e.g., because only a single view of the design is created,
because a single product variant is required, or because only
the latest version is saved) thereby effectively reducing the
number of dimensions through which one must navigate.

In this text box we compare these dimensions of design
data to the familiar dimensions of 3-D geometric objects.
In particular, we examine the problem of how a person
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Fig. 1I. Two aliernative models for managing versioned hierarchical designs (see Fig. 6} with

their corresponding format information models.

navigates through a building because this introduces the
elements of navigation, human cognition, and constrained
degrees of {reedom-all of which also apply to collections
of design information.

A large building can obviously be regarded as a collection
of rooms which happen 10 be distributed in three dimen-
sions. It is the responsibility of the building’s architect
to ensure that all rooms in the building can be reached
reasonably efficientlv at reasonable cost. The way to reach
a room obviously depends on the building’s architecture
{we will ignore the occasional Hollywood stunt man who
prefers scaling outer walls or other persons with eccentric
navigational behavior). The constraints imposed by the
building’s architecture imply that a straightforward math-
ematical representation of the target room’s coordinates
probably do not conform to the way inhabitants of the
building regard the building. Most civilians tend to require
and give directions in operational terms (“turn right. take

54

the elevator ...") rather than stating that the destination is
25 m North and 5 m West and at 10 m elevation.

Thus humans tend 1o use coordinate systems which match
the navigational paths which are available to them. Imagine
a cross shaped building with three floors, with a single
stairivay at the intersection of the building’s four wings.
Navigating 1o a room in this building involves taking the
stairway 1o the desired flocr. selecting the appropriate wing
and finding the appropriate room in that hallway. From
an information perspective. the navigation strategy for a
building with this architecture corresponds 10 a decision tree
where any room is found via a door in a hallway of a certain
floor of the building. The numbering schemes in such
building typically reflect this decision process by uniquely
identifying rooms in tenns of these three components.

Imagine now another building with three floors where
each of the four hallways has its own stairway and in which
you can only move from hallway to hallway at the ground
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tevel. In this scenario. navigation involves selecting a wing
of the building, foliowed by a hallway in that wing followed
by a door in that hallway,

It is worth noting that buildings with three geometric

__dimensions do not necessarily have to have three naviga-
:onal dimensions. A row of separaie cross shaped buildings

~would be 4-D from a navigational perspective, while a
cylindrical building would be 2-D.

We now return to the problem of organized design data
in such a way that the data elements can be searched by
navigating along semantically meaningful paths. Assume
a software development process in which a generic file is
maintained which contains all the information needed to
antomatically create several specific varianis of this file.
In this case, a navigation path to a specific file would
be “a variant of a version of the design.” The role of
version-selection in this “process architecture’ comresponds
to the role of the central staircase in our building analogy.
The concept of “version of the design” corresponds to the
concept of "“floor” in a building.

In an alternative design process, several design variants
evolve indeperidently over time. The navigation path wouid
involve identifying a specific file as “a version of a variant
of the design.” This is a different “process architecture”

«_together. The previous concept of “version of design”
has become meaningless. This is analogous$ to & building
with stacked rooms with an internal siaircase per room
and where the stacks and even the rooms themselves may
have a different height: the “floor” cencept has become
meaningless and has been replaced by the more ftting
“room stack” or “tower” and “floor-in-tower” concepts,

Another pair of examples would be a design process
which supports “versions of 2 view of a design™ (implying
that the views evolve more or less independentlv) versus
an alternative design process which supports “views of a
version of a design.”

These examples can also be extended to cover more
than two dimensions (giving rise to a larger number of
alternative processes): in a particular type of design process,
a data element may be identified as “z part of a vadant of
a view of version of a design.”

As this way of formulating the navigation process re-

- sembles the use of nesied operatoss, one can be led to
“wconclude that apparently these 5-D operators do no com-
mute: Version{Variant{design}) is not equivalent to Vari-
ant(Version(design)). This statement about the 5-D oper-
ators is probably of limited value. however. because the
basic problem is not that these two expressions rerumn
different results. The fundamental prablem is that, for one
type of design process Variant(design) is meaningful and
Version{design) is meaningless, and vice versa for another
type of design process. In our analogy about navigating
through buildings, this corresponds to a statement that
savs that in some architectures the concept of floors is
meaningless. In a castle with a number of towers, the
concept of floors which span the entire building is not very
intuitive, and fails altogether if the height of the rooms in
the various towers do not match.

(

This brings us 10 a key observation about the nature of the
five dimensions themselves: in multidimensional problems.
the five dimensions, when regarded separately, do not
have a formal definition. For a given design process (and
thus a given design data management model}, however,
a chain of concepts do have meaningful definitions. If
we assume that Part(Variani(View(Version(design)})) is
meaningful, than also the intermediate concepts Vari-
ant(View(Version(design)}), View(Version(design)) and
Version{design) are meaningful. As, in practice, people
tend to give concepts names like “view” or “design view”
rather than “View(Version(design))).” this implies that
terms like “design view” tend to have different meanings
in different design processes. Thus in multidimensional
situations, terms like “design view” cannot have an exact
definition.

Note that this doesn’t mean that the concept of “design
view"” is meaningless. It just means that the precise meaning
of “design view” must be defined in terms of how it
interacts with any other relevant dimensions and that this
interaction depends on the design process one is examining.

As a final observation on this topic, we would like to
point out that the meaning of terms like “design view” can.
within a given design process context, be formally defined
using iaformation modeling techniques. Prerequisite for this
is that a formal language for information modeling is used
(see Appendix B) and that the data schemas cover the
interaction between all relevant dimensions. Readers with a
formal information modeling background will undoubredly
have concluded for themselves that the navigation processes
described in the text box directly correspeond to the concept
of queries in databases and information modeling. The
navigational paths then cermrespond to a query path which
connects a notion of design {e.g.. called “design project™)
10 a notion representing an elementary unit of design data
as managed by the data management sysiem (e.g., called
“file™). The “design process architectures™ along which one
navigates correspond to the information models described
in Appendix B, or data schemas [26] as they are sometimes
more formally known.
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Version (Product)
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St

Varsions”

“Views of
Product Versions™

View (Version (Product))

Exampile: Philips standard for Technical Product Documentation
Characteristic: assumas consistent & stable documsnta tion sets
Jisadvantage: requires extra concept to avoid duplication of data

Infarmation and Software Technology

“Product
Views"

“Versions of
Product
Views”

Version (View (Product))

Examples: VMS operating system, Nelsis VLS! design framework

Characteristic: assumes independent view modification processes

Disadvantage: requires extra ‘equivalence’ relationships
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Views & Versions: configurabie solution

Design process

Mask data Flot files

[ see also Proceedings of ICCAD-90 conf. (Santa Clara) page 482-455
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Bonus-2: Information modeling notation
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Informatlon and Software Technalogy RWB-506-pr-060xx / 3-Jun-96 / 15

Pesech & PHILIPS

= View ( Version

Design process regarded as sequence  Design process regarded as sequence

of consistent product releases. of independently iterating steps.
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