
NordDesign 2016

August 10 – 12, 2016

Trondheim, Norway

Trade-offs Among System Architecture Modularity

Criteria

Roozbeh Sanai1, Kevin Otto2, Kristin Wood1, Katja Hölltä-Otto2

1SUTD-MIT International Design Centre, Singapore University of Technology and Design

roozbeh_sanaei@mymail.sutd.edu.sg

kristinwood@sutd.edu.sg
2 Department of Engineering Design and Production, Aalto University

kevin.otto@aalto.fi

katja.holtta-otto@aalto.fi

Abstract

Modularity is a key design research area of the Nordic countries, with a history of intensive

work over the last twenty years. In the last decade, there has been considerable research in

product modularity, measuring the level of modularity and various procedures for searching for

ideal modular architectures. Different manual heuristics and computer clustering algorithms

have been developed to search ideal modular architectures by optimizing a modularity metric.

However, the different criteria can be in conflict and improving one criteria may drive another

infeasible, without an appropriate compromising effect or insights into decoupling conflicts /

contradictions. We pose here the research question as to how to visualize product architectural

design criteria and trade-offs in the early conceptual or configurational design phase. We

analyze correlations between different system architecture modularity criteria provided in the

research field, namely the intra-cluster, extra-cluster costs, number of modules and the variance

in the size of modules. We demonstrate that these criteria trade-off with each other, and

therefore one cannot be improved without affecting the other. We also show that several of

these metrics are directly correlated; for example, the variance in the size of modules can be

controlled through the intra-cluster cost. Finally we observe that, although typically proposed

agglomerative or divisive hierarchical clustering algorithms might able to obtain optimal

architecture when only extra-cluster cost is of concern, such algorithms are not able to find

optimal cluster when both extra-cluster and intra-cluster cost are matter of interest. Overall, as

minimizing intra-cluster cost is in charge of proper sizing of modules, well-sized modules

cannot be obtained through conventional algorithms such as K-means clustering or similar.

Keywords: Product modularity, clustering algorithms, trade-off analysis

Nomenclature

Pareto-frontier Pareto Frontier, is the subset of solutions including all

solutions that at least one of their objectives is

optimized while the other objectives are kept constant.

Utopia-Point Solution that optimizes all objectivs, such a point often

doesn’t exist, but there are other solutions that keep

other objectives constant while optimizing one.

Design Structure Matrix (DSM) Matrix of Interactions between pairs of

Components/Functions

ClusterSize Number of Elements in Cluster

IntraClusterCost Overall cost of Interactions between Elements that

belong to the same cluster

ExtraClusterCost Overall cost of Interactions between Elements that

belong to different Clusters

TotalCost Sum of all Intra and Extra-cluster costs

DSMi,j Interaction between elements i and j

ClusterSizey Number of elements in cluster y

Powcc Exponent that penalizes the size of clusters in the

formula for TotalCost

Powbid Exponent that promotes the cluster size in the

ClusterBid formula

Granularity The extent to which a system is composed of

identifiable elements.

Hierarchy When every low-level module in the architecture is

sub-module to another higher level module.

1 Introduction

Modularity is a key design research area of the Nordic countries, with a history of intensive

work over the last twenty years. A module is an independent building block of a larger system

with a specific or primary function and well-defined interface (Otto & Wood, 2001). The aim

is to design the components of each module to be highly interdependent on each other, while

having weak dependencies on elements outside the module (Baldwin & Clark, 2000). There are

various benefits in using modular product architectures. The variety in customer needs of the

marketplace can be responded to faster and more effectively without significant development

effort in terms of time and cost (Du, Jiao, & Tseng, 2001; Gershenson, Prasad, & Zhang, 2003;

Hölttä & Otto, 2005; Marshall & Leaney, 1999). New functionalities can be added by

replacement of modules, parts replacement is far more convenient when they wear out, and

updating the system is possible without swapping unnecessary components (Dahmus & Otto,

2001). Moreover, design teams can focus on design of certain modules which allows

parallelization of design process. Modules designed for other products of a same product family

or earlier designs of similar products can be utilized in new designs, significantly reducing

design cycle time(Sanchez & Mahoney, 1996). Skania, Nokia, Volvo, and Electrolux are some

of the many Nordic companies making use of modularity.

In practice, modularization procedures are implemented either by using manual heuristic rules

(Stone, Wood, & Crawford, 1998, 2000a, 2000b; Sudjianto & Otto, 2001; Zamirowski & Otto,

1999), clustering algorithms, or a combination. Product architecture can be represented as a

graph where nodes of graph are components or functions of the product and edges of graph are

interactions between functions or components (Hirtz, Stone, McAdams, Szykman, & Wood,

2002; Stone & Wood, 2000). The adjacency matrix of such a graph would construct the Design

Structure Matrix (DSM) of a product. Here we use DSMs as a representation since they are

practicable when the system of interest is of considerable size and can be entered into computer

algorithms easier.

In most modularization algorithms, having maximum inter dependencies within each module

and minimum dependencies among modules are combined together in a single objective

variable (Hölttä-Otto, Chiriac, Lysy, & Suk Suh, 2012). Another concern is the sizing of the

modules, where it is often desirable to have more or less a similar number of components within

modules, for supplier and logistic concerns. Generating many small modules connected to one

or two large modules is not desired. We can also seek the minimum variance of module size

as another objective. In this paper, we show how the objective on module size can be controlled

easily within the commonly used DSM algorithms, by minimizing a variable in the algorithm,

the intra-cluster cost. Doing so can allow a designer to interactively determine a trade-off on

granularity of an architecture with an overall cost measure. The main point is to enable

interactive trade-offs between the algorithm results and designer judgement.

The subsequent sections of this paper are organized as follows. First we introduce procedures

to visualize trade-offs between criteria. We then demonstrate the use of the procedures on a

vacuum cleaner product example, providing a discussion of trade-off decision making between

different architectural measures.

2 Methodology

We propose to visualize a product architectural trade-off space of DSM alternatives through

executing a stochastic hill climbing algorithm for a large number of times. This approach will

stochastically generate a wide range of solutions in the neighborhood of the Pareto-frontier. A

difficulty is that the parameters of the modularity optimization are discrete, and so the Pareto-

frontier curve is not necessarily convex. Therefore executing a typical minimization of a

weighted summation of the parameters can lead to an aggregation of points in certain regions

of Pareto frontier and not others. The stochastic nature of the proposed hill climbing algorithm,

however, leads to points over the entire Pareto frontier. This allows a designer to visualize

trade-off between the parameters.

The IGTA+ algorithm developed by Börjesson (Borjesson & Hölttä-Otto, 2012) while working

with Nordic companies and KTH appears to be a suitable algorithm for this procedure. IGTA+

is built upon IGTA (Idicula-Gutierrez-Thebeau Algorithm)1, one of most commonly used

algorithms in product modularization. IGTA+ randomly choses individual components and

determines whether they must be moved into another module. Components will be moved to

clusters if the fit between a selected component (later referred to as ClusterBid) and each of the

existing clusters is improved. IGTA+ follows our desired stochastic hill-climbing approach,

with a certain probability the algorithm will select the cluster with second-highest ClusterBid

1 The initial version of IGTA was developed by John Idicula (Idicula, 1995) and then later refined by Gutierrez Fernandez
(Fernandez, 1998) and Thebeau (Thebeau, 2001). Gutierrez Fernandez converted the program into C and integrated it with the
Excel environment augmented it with more user-control parameters. The current MATLAB version of IGTA is written by
Thebeau. He also conducted experiments to determine values for several strategic algorithm control parameters. Thebeau‘s
Matlab code is freely downloadable (“DSMweb.org: MATLAB Macro for Clustering DSMs,” n.d.).

rather than highest bid. Only if the new clustering solution has a lower objective variable value

compared with an updated “best solution” will the solution be accepted as a new best solution.

The IGTA+ objective function can be expanded in the form

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 + 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 (1)

where ExtraClusterCost is the total number of interactions between different modules, weighted

by the size of the DSM, and IntraClusterCost is the number of interactions within individual

modules weighted by the sizes of the module. These quantities are as defined in (Fernandez,

1998) as follows:

𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 =

∑ (∑ 𝐷𝑆𝑀𝑖,𝑘 + 𝐷𝑆𝑀𝑘,𝑖𝑗,𝑘 ∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖
). 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒𝑖

𝑝𝑜𝑤𝑐𝑐𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
𝑖=1 (2)

𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 =

∑ (∑ 𝐷𝑆𝑀𝑖,𝑘 + 𝐷𝑆𝑀𝑘,𝑖𝑗,𝑘 ∉𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖
). 𝐷𝑆𝑀𝑆𝑖𝑧𝑒𝑝𝑜𝑤𝑐𝑐𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑖=1 (3)

Here we assume each component can only be assigned to one cluster, and ExtraClusterCost

and 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 can take form expressible in matrix form and so be quickly computed

(Borjesson & Hölttä-Otto, 2012). Solutions generated by the IGTA+ algorithm are mainly in

the neighborhood of the utopia point, and do not distribute very well through Pareto-frontier.

Therefore, we modify the definition of total cost into

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = min(𝑝 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡 + (1 − 𝑝)𝐸𝑥𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑜𝑠𝑡); (0 < 𝑝 < 1) (4)

Where p is the weighting parameter, we increase p from 0 to close to 1 incrementally in the

computations (computation time increases substantially for values of p close to 1). So the points

will be pushed into two extremes of Pareto-frontier (corresponding to p = 0 and p = 1) rather

than concentrating in the middle of Pareto-curve (corresponding to p=0.5) and this results into

more even distribution of points over the curve. In addition, other parameters of the IGTA+

algorithm can also tuned to obtain a clearer picture of a larger portion of Pareto curve.

We tuned the IGTA+ parameters before running examples. Although Thebeau (Thebeau, 2001)

suggested values of pow_bid = 1 and pow_cc =1 as they worked reasonably well in their Utopia

point search cases, for our Pareto search case these values lead to small modules where all

architectures had more than 4 modules. Through adjustment of these values we rewarded larger

clusters. Here through experimentation search, we found that pow_bid = -2 and pow_cc = -1

produce better sized modules with broader range of number of modules for architectures across

the Pareto frontier.

3 Results and Discussion

We now demonstrate the approach on a Black & Decker Dustbuster shown in Figure 1, a

vacuum cleaner with 57 components and 89 interactions, originally developed by Borjesson

(Borjesson & Hölttä-Otto, 2012). We implemented our methodology on different examples in

different ranges of complexity, such as Jet engines, Power-screwers, motor controllers, MRI

contrast injectors and printers and similar trends have been overserved in all these examples.

These examples are not shown for sake of brevity. Design structure and partial disassembly of

Black & Decker Dustbuster can be found in (Borjesson & Hölttä-Otto, 2012).

Figure 1. Black & Decker CHV1210 Dustbuster 12-Volt Cordless Cyclonic Hand Vaccum

Cleaner (www.homedepot.com)

Figure 2. The correlation between different system architecture modularity parameters.

Correlation between different recorded parameters can be observed in Figure 1. The red-

colored dots denote the average value of the parameter represented by the horizontal axis for a

certain value of vertical axis variable.

Figure 2.a shows the trade-off between intra-cluster cost and extra-cluster cost. The conflict

between intra-cluster and extra-cluster costs persists when the number of modules is kept fixed.

Notice the trending relationship between the variance of the modules sizes and the other

modularity factors. The trends drive the architectural modularity sizes to be larger.

As shown in Figure 2.b, the maximum variance is reduced by increasing the number of modules.

For larger number of modules, there is a trend toward overall smaller number of components

within each module. Therefore there is a decrease in variance as well.

As illustrated in Figure 2.c, both the minimum and maximum values of variance increase with

intra-cluster cost. Intra-cluster cost has positive correlation, and extra-cluster cost has negative

correlation with number of modules (Sanaei, Otto, Hölttä-Otto, & Luo, 2015). Thus, to see if

this increase is due to increasing the number of modules or is an independent effect, we keep

the number of modules fixed and observed the difference in the trend. We observed that both

maximum and minimum values of variance of module sizes are positively correlated with intra-

cluster cost. Intra-cluster cost is a driver of modular size variance within an architecture.

Finally, we consider observations on the relationship of extra-cluster cost for different number

of modules. We observe negative correlation between extra-cluster and maximum variance of

modules sizes. Again, to see if this negative correlation is attributable to the change in number

of modules, we keep the number of modules fixed and observe the difference. We see that

unlike the case of intra-cluster cost, both maximum and minimum values remain unchanged for

a fixed number of modules with change in the variance.

In an earlier paper (Sanaei et al., 2015), we observed that the optimal modular architectures

parameterized with an increasing number of modules does not constitute a hierarchical

structure. Therefore, hierarchical clustering approaches such as cluster trees that assume a

hierarchy behind optimal architecture do not necessarily provide the optimal architectures in

terms of connectivity. Simply speaking, breaking single modules up and combining them into

a new module could be less expensive that combining two modules already formed in one level

of a nested hierarchy.

Here we observed the same result. There is at least one hierarchical architecture with minimum

extra-cluster cost, but this particular architecture(s) might not have minimum intra-cluster cost

as well. So if we are only concerned about extra-cluster cost, hierarchical clustering cost might

be good enough. However, given that minimum intra-cluster cost corresponds to minimal

variance of modules size, we can conclude that modules produced hierarchically might not

come with proper sizing. Making the modules more or less of equal size has a compromising

effect on extra-cluster cost. Therefore a better approach is to consider the trade-off between

costs, module sizes and the number of modules, and interactively compare architectures on the

Pareto frontier.

4 Limitations

Here we observed a correlation between variance in size of modules and intra-cluster cost, there

are other factor to consider that may help understanding this relationship better. First, we

observe a correlation between variance of modules and number of modules, to exclude this

dependency from the relationship, it might be helpful to use standard deviation in place of

variance and see the difference. Furthermore, the effect of Powcc on this relationship is another

significant factor to consider.

5 Conclusions

Here we show that variance of size of modules can be controlled through intra-cluster cost,

even when the number of modules is fixed. Furthermore, we observe that, in all examples we

tried, optimal architecture in terms of extra-cluster cost constitute a hierarchy and therefore

such optimal modularization can be obtained by agglomerative or divisive hierarchical

clustering but optimal architecture in terms of both extra-cluster and intra-cluster cost do not

constitute such a hierarchy and therefore hierarchical clustering algorithms are not able to find

optimal clustering when both of these factors are of concern.

Acknowledgement

This work was supported by SUTD-MIT International Design Centre (IDC) (https://idc.sutd.edu.sg/). Any

opinions, findings, or recommendations are those of the authors and do not necessarily reflect the views of the

sponsors.

References

Baldwin, C. Y., & Clark, K. B. (2000). Design rules: The power of modularity (Vol. 1). MIT

press.

Borjesson, F., & Hölttä-Otto, K. (2012). Improved clustering algorithm for design structure

matrix. In ASME 2012 International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference (pp. 921–930). American

Society of Mechanical Engineers.

Dahmus, J. B., & Otto, K. N. (2001). Incorporating lifecycle costs into product architecture

decisions. In Proc 2001 ASME Design Engineering Technical Conferences.

DSMweb.org: MATLAB Macro for Clustering DSMs. (n.d.). Retrieved January 10, 2015, from

http://www.dsmweb.org/en/dsm-tools/research-tools/matlab.html

Du, X., Jiao, J., & Tseng, M. M. (2001). Architecture of product family: fundamentals and

methodology. Concurrent Engineering, 9(4), 309–325.

Fernandez, C. I. G. (1998). Integration analysis of product architecture to support effective team

co-location. ME Thesis, MIT, Cambridge, MA.

Gershenson, J. K., Prasad, G. J., & Zhang, Y. (2003). Product modularity: definitions and

benefits. Journal of Engineering Design, 14(3), 295–313.

Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., & Wood, K. L. (2002). A functional

basis for engineering design: reconciling and evolving previous efforts. Research in

Engineering Design, 13(2), 65–82.

Hölttä, K. M., & Otto, K. N. (2005). Incorporating design effort complexity measures in product

architectural design and assessment. Design Studies, 26(5), 463–485.

Hölttä-Otto, K., Chiriac, N. A., Lysy, D., & Suk Suh, E. (2012). Comparative analysis of

coupling modularity metrics. Journal of Engineering Design, 23(10–11), 790–806.

Idicula, J. (1995). Planning for concurrent engineering. Researchreport, Gintic Institute,

Singapore.

Marshall, R., & Leaney, P. G. (1999). A systems engineering approach to product modularity.

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture, 213(8), 847–851.

Otto, K. N., & Wood, K. L. (2001). Product design. Prentice hall.

Sanaei, R., Otto, K., Hölttä-Otto, K., & Luo, J. (2015). Trade-Off Analysis of System

Architecture Modularity Using Design Structure Matrix. In ASME 2015 International

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference (p. V02BT03A037-V02BT03A037). American Society of

Mechanical Engineers.

Sanchez, R., & Mahoney, J. T. (1996). Modularity, flexibility, and knowledge management in

product and organization design. Strategic Management Journal, 17(S2), 63–76.

Stone, R. B., & Wood, K. L. (2000). Development of a functional basis for design. Journal of

Mechanical Design, 122(4), 359–370.

Stone, R. B., Wood, K. L., & Crawford, R. H. (1998). A heuristic method to identify modules

from a functional description of a product. In Proceedings of DETC98 (pp. 1–11).

Stone, R. B., Wood, K. L., & Crawford, R. H. (2000a). A heuristic method for identifying

modules for product architectures. Design Studies, 21(1), 5–31.

Stone, R. B., Wood, K. L., & Crawford, R. H. (2000b). Using quantitative functional models to

develop product architectures. Design Studies, 21(3), 239–260.

Sudjianto, A., & Otto, K. (2001). Modularization to support multiple brand platforms. In Proc.

ASME International Design Engineering Technical Conferences, Design Theory and

Methodology.

Thebeau, R. E. (2001). Knowledge management of system interfaces and interactions from

product development processes. Massachusetts Institute of Technology.

Zamirowski, E. J., & Otto, K. N. (1999). Identifying product family architecture modularity

using function and variety heuristics. In 11th International Conference on Design

Theory and Methodology, ASME, Las Vegas.

http://www.homedepot.com/p/BLACK-DECKER-12-Volt-Dustbuster-Hand-Vac

CHV1210/203157739

http://www.homedepot.com/p/BLACK-DECKER-12-Volt-Dustbuster-Hand-Vac%20CHV1210/203157739
http://www.homedepot.com/p/BLACK-DECKER-12-Volt-Dustbuster-Hand-Vac%20CHV1210/203157739

