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Abstract 

System architecture is important for the design of complex mechatronic systems since it acts as a 

connection between conceptual design and detail design. An efficient automatic system architecture 

generation method is imperative for successful system design. However, some deficiencies remain, such 

as the omission of function-component mapping, the component combination explosion etc. In this 

study, an automatic system architecture generation method is proposed. First, the unified model of 

architecture information is established and two mapping manners are proposed. Then, the set of 

components which can realize the same function are further filtered and evaluated according to specific 

requirement. Finally, the compatible components are combined together to fulfill the overall function of 

the product. This method is supported by ontology knowledge base, and has good visual effect using 

SysML, which enables system designers to design a product efficiently. A case study is provided to 

demonstrate the feasibility and efficiency of the method. 
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1 INTRODUCTION 

Mechatronic system design is complex since it involves knowledge of different disciplines. As the core 

of model-based systems engineering (MBSE) (Estefan, 2008), system architecture is essential in system 

design. It influences the whole system quality, the subsequent detail design and the design cost. In 

resource-limited society, how to generate a feasible and optimal system architecture has attracted many 

scholars’ attention. As stated by Ulrich (1995), the architecture contains three parts:  

• The arrangement of functional elements;  

• The mapping from functional elements to physical components; 

• The specification of the interfaces among interacting physical components.  

Although there are a lot of researches on system architecture generation, some deficiencies still exist.  

• Most of the mapping from function elements to physical components is heavily based on designers’ 

experience (the existing products). The innovation is insufficient. The matching degree between 

function and its mapping component is not considered. 

• There should be different evaluation criterion for different kinds of components. According to 

detailed requirements, different criteria have different weights in distinct design process of the 

same product. How to evaluate the suitability of a component in realizing the corresponding 

function is not yet studied.  

• Compatible information between components is not considered in most system architecture 

generation processes. The infeasible system architectures are always excluded after the generation 

process. This kind of method may cause combination explosion and it is not efficient. 

In this paper, a new system architecture generation method is proposed to solve the above problems. 

Therefore, three necessary procedures are studied in this study. 

• Two kinds of function-component mapping method are proposed to ensure finding all available 

components that can realize the function;  

• Components that can realize the same function are evaluated using AHP (Saaty, 1990) in order to 

evaluate components under specific requirement and various criteria;  

• A new component combination method based on dynamic programming is proposed to solve 

component combination and inefficient problem.   

The generation method is applied to the automobile design to verify its feasibility. In system design, the 

automobile is abstracted with its main functions, then the feasible physical architectures are obtained to 

realize these functions through the function-component mapping, the component selection and 

evaluation, and the physical architecture generation processes. 

2 RELATED WORK  

There are some researches about system architecture generation and evaluation over the past years. 

According to Wyatt (2012), methods to support product architecture design can be divided into informal 

methods and formal methods. The informal methods like brainstorming (Osborn, 1957), which rely on 

human creativity, always lead to ‘Fixation’ effect (Purcell, 1996). The discontinuous and qualitative 

nature of system architecture, together with ‘Fixation’ effect may hinder designers from thinking beyond 

known architectures. Compared with informal methods, formal methods can be made systematic (Pahl 

et al., 2007), it can identify high-quality architecture more reliably and reduce the effect of fixation 

(Kurtoglu, 2009). Bryant et al. (2005) proposed rule-based repository definition and explored 

function/component allocation. They proposed to use the repository with a set of matrices that define a 

number of function/component allocation rules and compatibility constraints. Potential component 

configurations can be resulted from this concept generation process. However, whether the components 

are compatible is judged after concept generation, which may lead to combination explosion. Kurtoglu 

(2009) analysed the existing products, generated a series of generation rules, and proposed an automatic 

configuration flow graph generation method.  The deficiency of this method is that it depends on the 

existing products, a new component which is not used before may not be found, the innovation of design 

is limited. Wyatt (2012) researched on the computational method to assist product architecture design, 

a formal representation of design space and existing product architecture is proposed, four kinds of 

network structure constraints is defined to identify the rationality of system architecture. The method is 

proved to be usable, applicable and useful in practice. However, the constraints and design alternatives 
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in this method are formally and graphically specified, they are not represented in multidisciplinary 

engineering platforms such as SysML, and the information between function and component is omitted 

in this method. Moullec (2012) proposed a product architecture generation method based on Bayesian 

network. The components, the feature and constraints are all represented as node in Bayesian network. 

If all constraints are satisfied, the final global confidence value is computed to judge the feasibility of 

system architecture. However, this method generates a huge number of feasible architecture, which is 

difficult for designers to evaluate them. This generation method did not consider the specific 

requirement in each design process. Fixson (2005) developed a multi-dimensional framework that 

enables comprehensive product architecture assessments. The framework supports assessments from 

function-component allocation scheme and interface characteristics. It can be used to focus advice for 

product architecture design, to assess advantages and limitations of operational strategies in given 

product architecture etc. However, this framework is focused on analysis, which is not applicable to the 

automatic evaluation of huge product architectures in generation process. Okudan (2009) classified and 

analysed concept selection methods (CSM) provided between 1980 and 2008, he emphasized that a fast 

and simple method which gives importance to customer requirements and allows for coupled decisions 

under uncertainty is needed.  

3 METHOD OVERVIEW 

Generally, system architecture includes logical system architecture (the function layer) and physical 

system architecture (the component layer), system architecting is an indispensable part of system design 

and represents the transformation from an abstract system function to detailed physical components. 

The focus of this paper is physical system architecture generation, which is corresponding to the second 

and third parts of system architecture defined by Ulrich (1995). As shown in Figure 1, for each function 

in logical architecture (which is assumed to be already determined), the following three steps are 

conducted: 

• Find the components which can be used to realize the function and evaluate their matching degree 

with the corresponding function;  

• Exclude some components that do not meet specific requirement quota and evaluate the satisfied 

components according to the specific criterion of each kind of components together with the 

specific requirement;  

• Combine different components that can realize different functions when all functions in logical 

architecture are considered. The compatible information and the pros and cons of components are 

also considered in this combination process.  

After that, all feasible physical architectures are generated. The whole method is supported by an 

ontology knowledge base, which contains knowledge of components, functions, functional effects, 

criterion, flows etc. 

 

Figure 1. The flowchart of the physical system architecture generation method 
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4 FUNCTION-COMPONENT MAPPING 

Function-component mapping is the first step in physical system architecture generation process. In 

order to realize function-component mapping, the model of function and component should be 

established consistently. 

4.1 The unified model of function and component 

The unified model of function and component is established based on Systems Modelling Language 

(SysML) (Weilkiens, 2007). There are two extension mechanisms for SysML: the heavy-weight method 

that defines new meta-classes and the light-weight method that creates stereotypes by extending existing 

constructs (Cao, 2013). Here, the latter is chosen since it is well supported by the existing SysML 

modelling tool. Several stereotypes and their instances are established in this study, some typical ones 

are shown in Figure 2. In this study, the function is modelled with four tags: ‘input flow’, ‘output flow’, 

‘functional effect needed’ and ‘realizedBy’. The flow tags are established according to functional basis 

(Hirtz, 2002), whose type is «FlowDefined». ‘Functional effect needed’ means the functional effect 

needed to realize the function, the value of the tag ‘realizedBy’ are the components which have been 

used to realize the function in existing products. The component model contains ‘input flow’, ‘output 

flow’, ‘functional effect provided’ and a series of criterion tags. Here, the flow tags and the tag named 

“functional effect provided” are built in the same way as function. Based on «ComponentDefined», 

several specific component stereotypes are defined, e.g. «Engine». Different kinds of components have 

different criteria. The common criteria such as mass and cost are modelled in the stereotype 

«ComponentDefined», while the specific criteria of each component are modelled in its own stereotype. 

 

Figure 2. The unified modelling of function and component 

4.2 Mapping method 

Two mapping method are provided here to ensure all components which can realize a function are found. 

In order to support two kinds of product architectures (modular product architecture and integral product 

architecture) stated by Ulrich (1995), the definition of function and component in this paper is 

generalised, which may refer to the combination of functions and components respectively. 
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4.2.1  Case-based mapping 

Case-based mapping is the mapping method based on empiric. The existing products are analysed and 

the frequently used function-component mapping lists are stored in knowledge base. In a new product 

design process, the logical architecture can be analysed to find whether there are some functions which 

have some corresponding components in knowledge base. If there are some components corresponding 

to a function in the mapping list, it means that these components are options to realize the function, set 

them as the function’s ‘realizedBy’ tag value.  

4.2.2 Rule-based mapping 

The case-based mapping may limit the innovation of design, perhaps there are some components which 

can realize a function have never been used in previous design. Therefore, rule-based mapping is 

proposed according to the two classical definitions of function stated in Rodenacker (1997) and Miles 

(1972). There are mainly three rules based on the unified model: 

• For a function in logical architecture whose input is coming from environment and whose input 

flows are different with output flows, if the output flow of a component is the same as or the 

superclass of the output flow of the function, it is deemed that the function can be realized by the 

component. 

• For other functions in logical architecture, if a function’s input flows and output flows are the same 

as or the subclass of a component’s input flows and output flows respectively, it is deemed that 

the function can be realized by the component. 

• For all functions in logical architecture, if the value of its ‘functional effect needed’ tag is matching 

with a component’s ‘functional effect provided’ tag value, it is deemed that the function can be 

realized by the component. 

In innovative design, perhaps there are some functions which have no mapping component in the 

knowledge base. In this situation, the above two mapping methods are invalid. Designers should discuss 

with each other or search online to find the components which can realize these functions, and extend 

the knowledge base. 

4.3 The matching degree between function and component 

A function may be realized by many components, different components may have different performance 

in realize the same function. As shown in Section 4.2.2, if a component’s input flow and output flow is 

totally matched with a function’s input flow and output flow, while another component’s input flow and 

output flow are superclass of the same function’s input flow and output flow, it is obviously that the 

former component is more suitable to be used to realize the function. Therefore, evaluate the matching 

degree between function and component from qualitative aspect is necessary. In this paper, the 

components which can realize a function are divided into three categories: totally match, mostly match 

and half match. Totally match means that the input flow and output flow of a component is the same as 

the input flow and output flow of a function, the matching degree is set to 1; mostly match indicates that 

a component’s input flow or output flow is the same as its mapping function’s input flow or output flow, 

and another one has the superclass relationship, the matching degree is set to 0.8; half match implies 

that both the input flow and output flow of a component are superclass of its corresponding function’s 

input flow and output flow, the matching degree is set to 0.5. This matching degree is used as an index 

to evaluate the component’s suitability to realize the function in the following section. 

5 COMPONENT SELECTION AND EVALUATION 

Using the method stated in Section 4, all components which can realize the function are found and 

evaluated from qualitative aspect. However, as the class of components which can realize the same 

function have some common criterion, e.g. the power and torque of engine, and different criterion of the 

same component class may have different weights according to the specific requirement in different 

design processes. Therefore, evaluate the suitability of each component in realizing the same function 

from quantitative aspect according to specific requirement is needed.  

5.1  The evaluation criterion collection 

In this study, the evaluation criteria are divided into two kinds: common criterion and specific criterion. 

The common criteria are referred to the criterion all kinds of components have, e.g. price, mass. The 
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specific criteria are referred to the specific criterion belonging to specific component, e.g. power of 

engine. For different kinds of components, collect their commonly used criterion respectively and 

establish them in knowledge base. 

5.2 Component selection 

In specific product design, there may be some hard requirements for some criterion, e.g. the power of 

engine should not lower that 200PS in premium car design. Therefore, the components found in Section 

4 should be checked, and excluded some components which are not satisfied in specific requirement. 

5.3  Component evaluation 

After the exclusion process, the satisfied components for each function should be evaluated according 

to specific criterion and specific requirement. Different kinds of components have different kinds of 

criterion, there may be some relationships between these criteria. For example, power, torque, price etc. 

are commonly used criterion in evaluating engines, generally the higher the power, the higher the price, 

however, the higher the power and the lower the price is what we want. In different design processes, 

different criteria have different weights. For example, the power has higher weight than price in 

premium car design, and they may have the same weight in ordinary family car design. In this paper, 

Analytic Hierarchy Process (AHP) (Saaty, 1990) is used to evaluate different components with different 

criterion according to various requirements. Take the function ‘generate power’ as an example, the 

suitability degree of different engines in realizing the function are evaluated using AHP. As shown in 

Figure 3, the first layer is the function ‘generate power’, which is the overall goal of the problem; the 

criterion layer contains qualitative criteria (the matching degree stated in Section 4.3) and quantitative 

criterion (power, torque, emission, price etc.); different engines form the component alternatives layer. 

 

Figure 3. A hierarchy for choice of function ‘generate power’ 

After evaluate the satisfied components for each function in logical architecture, different kinds of 

components should combine together to fulfil the overall function of the product. In the combination 

process, the compatibility between components should be checked. How to generate all feasible physical 

architecture efficiently and avoid the problem of combination explosion is the task of next section. 

6 PHYSICAL ARCHITECTURE GENERATION 

An objective function that combines criterion is constructed in Kurtoglu (2010). According to the 

objective function, compute the transition cost for each node in Configuration Flow Graph (CFG), find 

the component which has the minimum transition cost until the whole CFG is instantiated and the 

optimum solution is reached. However, a criterion in system design may refer to an attribute, an 

objective, a performance requirement, a goal or a point of view, it is not always considered as a 

mathematical function (Moullec, 2016). Therefore, the solution reached in Kurtoglu (2010) is the 

optimum one from transition cost aspect, but it maybe not the one designer want. In this paper, all 

feasible physical architectures are listed and sorted by weight. 
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6.1 Component combination method based on dynamic programming 

In this paper, the physical architecture generation process is divided into several component combination 

steps, which is based on dynamic programming. The number of combination steps is different according 

to the granularity of the function in logical architecture, whose maximum value is the number of 

functions. The satisfied components for each function are added successively, whether the new added 

component is compatible with the existing components in the list is checked. If compatible, the new 

component is added and a new component combination is reached; if not, try another existing component 

list. The whole set of feasible physical architecture is reached when all functions in logical architecture 

are considered.  

As shown in Figure 4, assume that there are three functions in logical architecture (function1, function2, 

function3) and there are three kinds of components (A, B, C) correspondingly. Assume that {A1, A2, 

A3}, {B1, B2}, {C1, C2, C3} are the satisfied components of function1, function2, function3 

respectively. Assume that the suitability of A1 to realize function1 is 0.6, the suitability of A2 to realize 

function1 is 0.3, the suitability of A3 to realize function1 is 0.1. Similarly, the suitability of B1 and B2 

to realize function2 is 0.4 and 0.6 respectively. The suitability of C1, C2, C3 to realize function3 is 0.4, 

0.3, 0.3 respectively. The physical architecture generation process is divided into three steps in this case. 

In the first step, there are three options {A1, A2, A3}; in the second step, there are only four choices 

{A1, B1; A1, B2; A2, B1; A3, B2} since {A2, B2}, {A3, B1} are not compatible; similarly, in the third 

step, there are only six options {A1, B1, C2; A1, B2, C1; A2, B1, C2; A2, B1, C3; A3, B2, C1; A3, B2, 

C3}. The red dotted line in Figure 4 means that the components linked are not compatible. In this way, 

all feasible physical architecture and their information (suitability in this design, rough price etc.) are 

generated, and they can be evaluated by this information. Designers can choose one or more physical 

architecture from this set to do further design. 

 

Figure 4. Component combination method based on dynamic programming 

7 IMPLEMENTATION AND CASE STUDY 

The whole physical architecture generation method is implemented as a plugin in IBM Rational 

Rhapsody. It is supported by an ontology knowledge base. The automobile design is used here to verify 

the effectiveness of the method. The logical architecture shown in Figure 5 is the input of this method, 

here the logical architecture is simplified and only the main functions are considered.  
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Figure 5. The logical architecture of automobile 

For each function in Figure 5, find its matching components (stated in Section 4), exclude some 

components which are not satisfied under specific requirements and evaluate the other satisfied ones 

(stated in Section 5). The corresponding components to realize function ‘generate power’, the 

corresponding mapping ways and their matching degree with the function are shown in Figure 6. The 

component selection procedure of function ‘generate power’ is shown in Figure 7. If there are some 

specific requirements about this function, designers can input them in the selection table and the 

components which are satisfied are shown as the right part of Figure 7. The blank space means that there 

is no limit about the criteria. When the whole satisfied components are obtained, the component 

evaluation procedure is carried out as shown in Figure 8. The relative weight of each criterion is input 

in the table (the blank space means that the criteria is not considered in this procedure) and the suitability 

of each engine is shown as the right part of Figure 8. 

 

Figure 6. The components corresponding to function ‘generate power’ 

           

Figure 7. The remaining components after component selection 
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Figure 8. The suitability of each component to realize function ‘generate power’ 

When the satisfied components and their corresponding suitability degree of each function in Figure 5 

are obtained as shown in the right part of Figure 8, the component combination procedure can be 

executed. All feasible physical architecture together with their information, e.g. weight, price, are listed 

in Figure 9. Here, weight is the sum of suitability degree of each component in the list item. The higher 

the weight, the better the components.   

 

Figure 9. The feasible physical architecture list 

8 CONCLUSION  

System architecture is the core of system design. It reflects the results of early design decisions and is 

also the basis of other system-level work (system optimization, system simulation, etc.) and subsequent 

detail design. Although several system architecture generation methods are proposed, there is still no 

method which support the automatic transformation from logical system architecture to physical system 

architecture and consider the suitability of components according to specific requirement. In this paper, 

an automatic physical system architecture generation method is proposed. The main contribution is as 

follows: 

• Two kinds of mapping method between function and component are proposed. Under the premise 

that the library is perfect, all components corresponding to the function can be found and their 

matching degree with the function from qualitative aspect is considered. 

• The common criterion of each kind of components are collected and built in ontology knowledge 

base. The satisfied components of each function are evaluated relatively with these criteria from 

quantitative aspect according to specific requirement. 

• An efficient component combination method based on dynamic programming is proposed. The 

evaluation information of the physical architecture can be collected in each combination step, and 

the combination explosion is avoided. As all feasible physical architectures are listed and sorted 

by suitability weight, there is no risk that some preferable physical architecture options are lost.  

The physical architecture generation method can be used hierarchically in product design. This means 

that the automobile can use this method to find the optimum component combination, the engine, which 

is a part of automobile, can use this method to find the optimum component combination either. The 

method is efficient and generic for any product design. However, this study is still in its infancy. The 

first physical architecture item listed in Figure 9 is component optimum. How to layout these 

components to obtain the optimum product performance will be addressed in our future research. 
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