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Abstract 

Optimization of mechatronics system often rely on optimization of the controller, while treating the 

structural part of the system as a fixed constraint. The research work presented in this paper has the goal 

of obtaining a robust design for a quadrotor drone, focusing on the structural parameters of the drone, 

such as mass and dimensions. A robust design method is a design that focuses on minimizing the effects 

of the variations of the design parameters, here structural parameters, on the response of the system. In 

this paper, the system’s response is represented by its energy consumption. Using a MonteCarlo 

simulation, the most influential design parameters are first determined, and then a designer-defined 

objective function is minimized to obtain a robust mechanical design for the quadrotor at hand. The 

optimized drone is then shown consuming less energy than a comparable drone, while also being more 

robust to variation of design parameters. 
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1 INTRODUCTION 

Design of mechatronic systems is inherently complex due to their multi-domain nature. This different 

engineering domains, involved in the design activity, influence each-other during the design process, 

making the design a tedious task to achieve for design engineers (Mohebbi et al., 2014). Traditionally, 

a mechatronic system is designed sequentially, the mechanical part first and then the electronic 

components followed by the control strategy. To obtain a more optimized design, the coupling between 

the different components and domains must be evaluated in early stages of the design process in order 

to avoid negative dependencies effects (Alyaqout et al., 2011). Many have suggested different methods 

with the goal of obtaining a better design which incorporate both the mechanical and control aspects of 

the mechatronic system. The methods proposed tend to focus on optimizing one aspect of the system, 

for example, the control, or the mechanisms in a disconnected way. 

This paper presents a detailed case study of a quadrotor drone robust design. The quadrotor drone is an 

interesting case study for this research work mainly because it is a complex mechatronic system, 

involving various domains such as aerodynamics, structure, control, and electronics. Additionally, 

quadrotor drones are increasingly present in today's world and are used for many different applications; 

however, they are still costly, even the ones used for entertainment purposes. Small to medium drones 

are often powered by batteries, which are always a concern in autonomous mechatronic systems due to 

their relative high weight and to the fact that they limit the maximum autonomy of the system.  

Some methods were proposed in the literature for the design support of drones or mechatronic systems 

in general. One of such methods is Design for Control (DFC) strategy applied to visually served drones 

presented by Mohebbi et al. (2015). DFC involves the simplification of the dynamic modelling of the 

system, to fully understand it and ease its representation, and then designing a control algorithm which 

improves the control of the system. Another design method is the robust structure-control design, which 

proposes the use of a non-linear dynamic multi-objective optimization to design a system which 

considers the interaction between the structure and the control to propose a robust design as presented 

by Alyaqout et al. (2011). In this method, the robustness of the system is mostly achieved by the design 

of the controller only, limiting it practically to a robust control approach. In other words, in both these 

methods it is the control part that is the design focus and no major information is obtained about the 

mechanisms; additionally, the interaction goes in a single direction from control to mechanism while 

the other way is only achieved by further simplifications of the dynamics by adding extra constrains 

such as stability criterions (Mohebbi et al, 2015).  

This paper will present the robust design of a drone, especially of its structure. Applying an optimization 

method to obtain a robust design of a quadrotor drone could eventually lead to a better evaluation of the 

parameters variation on the quadrotor energy consumption and hence resulting in quadrotor drones with 

lower energy consumption, increased battery life and lower cost.  

The basics of robustness and the concept of a robust design were notably introduced by Taguchi and 

Wu (1979). A robust design was then defined as a design that is insensitive to noise or small variations 

in the system's parameters or inputs. Robust design methods are employed in many different domains 

and applications. Choi et al. (2008), designed, on a molecular level, robust materials. Zang et al. (2005) 

identified that one of the most successful field of application for robust design is mechanical engineering 

design, especially in static performance.  

The design method explored in this paper focuses on designing a robust mechanical aspect of the 

mechatronic system while in parallel always considering its control strategy. Both the mechanism and 

the control strategy are considered as wholes and are not further simplified to ease the optimization 

process like it is done in DFC. As said before, to realize a robust design is to achieve a better control 

over the effect of these variations by designing the most resistant system to uncertainties and variations 

in design parameters. The variations and uncertainties in design parameters could generally result from 

the fabrication methods, the fabrication process as reported in Caro et al. (2005). Abraham et al. (2001), 

proposed two ways of reducing the variations effects. First, they proposed to control the noise, which is 

not always easy or even feasible. Second, they suggested exploiting the interaction between noise, 

variation and their effects. Chen and al. (1996), defined two categories of problem, the first Type I where 

the system is optimized by "minimizing the variations in performances caused by variations in noise 

factors (uncontrollable parameters)" and Type II where the system is optimized by "minimizing 

variations in performance caused by variations in control factors (design variables)". Allen et al. (2006), 
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added a third type, Type III, where the system is optimized to minimize the effects of the uncertainty of 

the system model. In this paper, we will use a Type II optimization.  

We rely on a MonteCarlo based simulation to induce uncertainties in design variables and then analyze 

their effect on the quadrotor drone responses. Design variables are parameters of the system (i.e. physical 

parameters: mass, components dimensions) that are chosen by the designer and the responses are 

different responses of the mechatronic system (i.e. rise time, energy consumption, etc.). A designer-

selected design objective function, which involves the results of the MonteCarlo simulation, is then 

optimized using boundaries, equalities and inequalities to minimize the defined function. The response 

studied here will be the energy consumption. As mentioned above, drones are powered by batteries that 

limit the maximum flight time of the system. A robust drone in terms of energy consumption would 

mean that this drone consumes less energy that an initial design, for the same task, and those variations 

on the drone's physical parameters would also have less effect of the energy consumption. Therefore, 

achieving a robust design can lead to a better understanding of the variations of the parameters of a 

quadrotor drone, which in turn can yield new designs with looser tolerances and eventually lower 

production costs. As identified by Hasenkamp et al. (2008), most of the models proposed in the literature 

are either pedagogical or academic takes on robust design and would be hard to implement in industry. 

The methodology presented here could easily be applied by any drone designer to analyze and design a 

drone for robustness.  

It is worth noting that we also tested the effect of a robust design approach on the time response, the 

time response being a major performance variable in the time domain for dynamical systems, however, 

the results showed that the time response was mainly affected by the controller gains than the physical 

parameters of the drone itself. Therefore, this was left out of this paper.  

2 SYSTEM MODELING AND PARAMETER ANALYSIS 

The model used in this paper, for the quadrotor drone dynamics, controls the system’s position in terms 

of the altitude 𝑧 and the attitude roll, pitch, yaw (𝜙, 𝜃, 𝜓), as defined in Equation 1. These represent the 

state variables of the quadrotor drone as represented by the tensor X: 

𝑋 = [𝑧(𝑡) 𝜙(𝑡) 𝜃(𝑡) 𝜓(𝑡)] (1) 

The quadrotor dynamic equations are used as developed by Bouabdallah and Siegwart (2007b), no 

further simplification of the dynamics or extra stability constraints will be applied. Variables presented 

in Equation 1 are function of time (t), but for clarity will not be noted as such. The equation of movement 

can be summarized by the following important ones: 

{
 
 
 
 

 
 
 
 �̈� = �̇��̇�𝑎1 + �̇�𝑎2Ω𝑟 +

𝑈2

𝐼𝑥𝑥
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�̈� =  �̇��̇�𝑎5 +
𝑈4

𝐼𝑧𝑧

�̈� =
𝑢𝑥𝑈1

𝑚

�̈� =
𝑢𝑦𝑈1

𝑚

�̈� = 𝑔 −
(cosϕcosθ)U1

𝑚

 (2) 

where the 𝑎𝑖, 𝑖 ∈ [1,5] and 𝑏𝑘 , 𝑘 ∈ [1,3] are physical constants of the quadrotor defined as:  

{
 
 
 
 

 
 
 
 𝑎1 =

(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
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𝐽𝑟

𝐼𝑥𝑥
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𝐽𝑟
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𝑎5 =
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𝐼𝑧𝑧

 (3) 
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Ω𝑟 = Ω1 + Ω3 − Ω2 −Ω4

𝑢𝑥 = cos𝜙 sin𝜃 cos𝜓 + sin𝜙 sin𝜓
𝑢𝑦 = cos𝜙 sin𝜃 sin𝜓 − sin𝜙 cos𝜓

 (4) 

Where 𝜙�̇��̈�, 𝜃�̇��̈�, 𝜓�̇��̈� are the Euler angles and their associated speeds and accelerations, 

�̈��̇�𝑥, �̈��̇�𝑦, �̈��̇�𝑧 are the Cartesian accelerations, speeds and positions in the world-fixed frame, 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 

are moments of inertia around x, y, z axis respectively,  𝐽𝑟 is the rotor inertia, 𝑙 is the propeller distance 

to the center of gravity (CoG) of the quadrotor and 𝑚 is the mass of the quadrotor. Also Ω𝑖 with 1 ≤
𝑖 ≤ 4  are the propeller angular rates, and Ω𝑟 is the overall residual propeller angular rate, b and d are 

respectively thrust and drag factor determined experimentally. Finally, 𝑈𝑖 are the inputs of the system 

defined by Equation 4. The main variables are also illustrated in Figure 1. 

It is important to note that these equations of motion hold only for small variation of the Euler angles 

𝜙, 𝜃, 𝜓 around the drone's equilibrium (null angles). This model was chosen for its simplicity and for 

the fact that the energy consumption of the drone in response to step command is studied. It would be 

interesting to eventually compare the results obtained with this model to results obtained with a complete 

model of the drone and for more athletic manoeuvre.  

 

Figure 1. Quadrotor model with its design parameters 

The system is modelled in Simulink, using 4 Proportional Derivate (PD) controllers, sending a reference 

signal, one for each state variable, defined in Equation 1.  

Using this closed loop system, it is now possible to analyze the effect of each physical variable of the 

quadrotor and the effect of the uncertainties associated to them on the system's response. The physical 

variables are those that would normally be chosen during the structural design of a system. These are 

generally referred to as non-real-time parameters (NRTP), meaning that they are normally set in time 

and are hard to change when the design is fixed as explained by Mohebbi et al. (2015).  

The robust design method presented here deals with NRTP, while the controller is set to a PD, it can 

however be refined using a dedicated method such as DFC, or a traditional poles placement method. A 

vector 𝑝 containing all of the NRTPs considered here is defined as follows: 

𝑝 = [𝐼𝑥𝑥   𝐼𝑦𝑦   𝐼𝑧𝑧   𝐽𝑟   𝑏   𝑑   𝑙   𝑚 ] (5) 

The effect of the uncertainties on the response for each parameter, evaluated through the energy 

consumption, need therefore to be calculated. This is accomplished using a MonteCarlo simulation, 

which is a statistical process that repeats multiple times a process using a random sampling of data. The 

MonteCarlo simulation loop analyses the impact of each parameter variation on the energy consumption 

(Egel, 2009). The simulation runs the model of the quadrotor drone 𝑁 number of times, generally more 

than a thousand times (Mooney, 1997). From this we obtain a distribution of energy consumption values 

(explained further in the paper), which in turn can be analyzed to obtain results on the effect of each 

parameter.  
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First, each element of the vector 𝑝 is affected by uncertainties, either due to experimental measurements 

of the parameter, or from the manufacturing process. The uncertainties can be represented as forming a 

normal distribution, having a specific mean (𝜇𝐼𝑥𝑥) and variance (𝜎𝐼𝑥𝑥
2  ) (Du et al., 2009): 

𝐼𝑥𝑥 ∈ 𝑁(𝜇𝐼𝑥𝑥 , 𝜎𝐼𝑥𝑥  
2) (6) 

Firstly, each parameter is selected randomly 𝑁 times from the normal distribution. Secondly, a response 

function is defined. In this paper, the function is the electrical energy consumed by the quadrotor drone 

which is proportional to the squared speed of the propellers. It is, therefore, possible to summarize it as 

the following expression: 

𝑒(𝑡)  ∝ ΣΩ(t)2 ∝ 𝑈1 (7) 

where 𝑒(𝑡) is the energy consumed as a function of time, 𝛺(𝑡) the speed of the propellers as a function 

of time and 𝑈1 the input defined in Equation 4.  

A value proportional to the energy consumed by the quadrotor can be directly extracted from the 

mathematical model using Equation 7. Using the previously defined vectors of parameters and the 

response function, the MonteCarlo simulation evaluates the energy consumed by the quadrotor for a 

step excitation input for each of the system state variables.  

The energy consumption is then integrated over time to obtain the total energy consumed by the 

quadrotor for each simulation of the MonteCarlo analysis. A histogram of the distribution of the total, 

integrated energy consumption shows that it approximates a normal distribution, when using a normal 

distribution to evaluate the uncertainties on the NRTPs as illustrated in Figure 2.  

 

Figure 2. Distribution of the energy consumption obtained by Monte Carlo simulation for a 
quadrotor drone  

Using the newly obtained results, it is now possible to analyze which parameters of the 𝑝 vector 

(Equation 5) have the most important effect on the consumed energy.  

To this purpose, a linear curve is fitted through each parameter with respect to the energy consumed to 

determine the most effective parameters. The slope of each regression is then multiplied to the difference 

between the minimum and maximum value of each parameter vector to get an absolute value of the 

energy consumption induced by the variation in the parameters. The y-axis value on the Pareto plot 

(Figure 3) can be determined using the following equation:  

Δ𝐸 = 𝑠𝑙𝑜𝑝𝑒 ∗ (max(𝑝) − min(𝑝)) (8) 

where 𝐸 is the total energy used by the quadrotor and 𝑝 is the value of the parameter analyzed.  

Analyzing the results illustrated in Figure 3, it is easy to determine that the mass of the quadrotor is the 

most influencing parameter on the energy consumption. Knowing which parameters are the most 

important and how the variation of these parameters affect the response of the quadrotor, it is possible 

for the design engineer to develop a better strategy to improve the design of the quadrotor. This will be 

carried out in Section 3. 
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Figure 3. Pareto plot of the most influential parameters obtained by Monte Carlo analysis of 
the energy consumption of a quadrotor drone 

3 QUADROTOR DRONE ROBUST DESIGN METHODOLOGY 

The MonteCarlo simulation analysis is now integrated into a robust design optimization double-loop.  

A design variable vector is first determined from the quadrotor model. The same vector 𝑝 from Equation 

5 is used here. These are the variables that the method optimizes to obtain a robust design. The goal of 

the method is to minimize an objective function defined by the design engineer. Here we use the 

MATLAB function fmincon for the optimization loop. As mentioned in Zang et al. (2005) review on 

robust design, stochastic heuristic methods such as particle swarm optimisation and evolutionary 

algorithms seem to be a good alternative for this type of problem in comparison with standard 

optimisation algorithms such as the one used in this paper.  

To obtain a robust design, the function must at least be composed of the standard deviation of the 

response, here the energy consumption, obtained by the MonteCarlo simulation. The optimization 

algorithm then finds the value for each parameter of the vector 𝑝 which will minimize the objective 

function 𝑓 as described by Equation 9. 

𝑓 = 𝜔1𝜇 + 𝜔2𝜎
2 (9) 

where 𝜔1, 𝜔2 are weight factors determined by the designer, 𝜇 is the mean of the energy consumed and 

𝜎 is the standard deviation of the distribution of the energy consumed. The sample mean and the sample 

variances are calculated from the results of the MonteCarlo simulation as follows and such as defined 

in Park et al. (2006): 

{
𝜇 =

1

N
∑ 𝐸𝑖
𝑁
𝑖=1

𝜎2 =
1

𝑁−1
∑ (𝐸𝑖 −  𝜇)

2 𝑁
𝑖=1

 (10) 

where 𝐸 is the energy consumed by the quadrotor during simulation run number 𝑖 where 𝑖 = [1,  𝑁]. 

The minimization procedure can take in different optimization constraints, such as inequalities or 

equalities between the parameters, or between a parameter and a constant. The optimization algorithm 

starts from a starting point 𝑥0 and can also use lower and upper boundary vectors for the parameter, such 

as those used in this case study.  

These values are mostly determined by validating if the controller still applies correctly to the system 

using those upper and lower boundaries. The algorithm will then run the double-loop MonteCarlo 

simulation numerous times, until it finds a minimum in the objective function defined by equation 9.  

The applied method can be summarized as follows:  

1. The designer chooses an objective function to be minimized (such as Equation 9). The lower and 

upper boundaries vectors as well as the initial values are to be defined.  

2. Using the initial values of the mean for each parameter distribution, a vector of dimension N is 

generated for each parameter defined in Equation 5. 

3. For each value of the parameters, the response (energy consumption) is calculated. This is the 

MonteCarlo simulation which is repeated N times. This step is the first loop of the algorithm. 

m  Ixx d  Jr 
0

10

20

30

40

50

60

Parameters

D
if
fe

re
n
c
e
 o

f 
e
n
e
rg

y
 c

a
u
s
e
 b

y
 t

h
e
 p

a
ra

m
e
te

rs

Effect of the parameters on the energy consumption

0%

16%

31%

47%

63%

78%

94%

400



ICED17 

4. Using the results of the MonteCarlo simulation, the standard deviation and mean of the simulation 

are calculated.  

5. The optimization algorithm generates a new set of values for the mean of each parameter and 

returns to step 2. This is the second loop of the algorithm.  

6. When the minimum of the objective function is obtained, the value of each parameter is found.  

 

Figure 4. Robust design algorithm used for quadrotor design 

Figure 4 presents an illustration of the double MonteCarlo-based algorithm which helps design the 

mechanical part of the system while considering the chosen control strategy (the applicability is 

constantly evaluated). It is worth noting that in the first loop the MonteCarlo simulation calculates the 

distribution of the response for a set of values, and then in a second loop, the optimization algorithm 

sets varied values of the parameters vector along the chosen distribution in order to minimize the 

objective function (minimizing energy consumption).  

4 APPLICATION TO A QUADROTOR DESIGN AND PARAMETER ANALYSIS 

The quadrotor is first modelled in Simulink using the equation of motion (Equations 1 to 3) and 4 PD 

controllers. The initial set of values will be the initial vector (x0) for the optimization algorithm. The 

PD controller gains are tuned so that the time responses of the quadrotor (in both altitude and attitude) 

are as desired. In Section 2, it was concluded that the mass was the most influential parameter on the 

quadrotor design such as presented in Figure 3. Analyzing the other parameters effects, it is clear, to a 

lesser degree, that the moments of inertia are also affecting the response. Since the moments of inertia 

are in fact mostly based on the mass of the quadrotor, the moments are approximated by Equations 11. 

These equations assume that the quadrotor center is a sphere of mass M and radius R, and that each 

motor is at a length l of the CoG, and have a mass of 𝑚. 

{
𝐼𝑥𝑥 = 𝐼𝑦𝑦 = 

2𝑀𝑅2

5
+ 2𝑙2𝑚

𝐼𝑧𝑧 = 2 𝐼𝑥𝑥
 (11) 

With those approximations, a lower boundary is defined for the moments of inertia in 𝑥 and 𝑦 directions 

as being the inertia caused by the motor's mass. A lower boundary is also defined for the inertia in 𝑧 

direction. These inequalities are defined in Equation 12. 

{
(𝐼𝑥𝑥 = 𝐼𝑦𝑦) ≥ 2𝑙

2𝑚

𝐼𝑧𝑧 ≥ 2𝐼𝑥𝑥
 (12) 

It is harder to directly set the values of the parameters 𝐽𝑟, 𝑑 and 𝑏, in comparison to the inertia moments 

or the mass, but they are still treated as design parameters to evaluate their variations effect on the 

quadrotor. Finally, the mass (𝑚) and arm's length (𝑙) parameters' boundaries are fixed following 

specifications on the size of the drone. Here we wanted to have a relatively small drone, so the mass and 

arm's length are fixed accordingly.  

Therefore, the lower and upper boundaries for the design method are determined. This will assure the 

results to be within those boundaries and that the designed quadrotor will still fulfil the specifications 
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and will be controllable by the chosen PD. The values for each vector (𝑥0, lower and upper boundaries) 

are detailed in Table 1. The mean and variance of each parameter are listed in Table 1. The nominal 

values, also called initial values, used in this paper are taken as is from Bouabdallah's thesis (2007a). 

The standard deviation is then approximated to a value of about 10% of the mean, for simplicity 

purposes. However, this value can easily be altered by the design engineer to reflect the real distributions 

of the parameters.  

Table 1. Numerical values of the parameters 

 𝑥0 𝜎 Lower Upper Optimized 

𝐼𝑥𝑥 7.5e-3 7.5e-4 5e-3 1e-2 1e-2 

𝐼𝑦𝑦 7.5e-3 7.5e-4 5e-3 1e-2 1e-2 

𝐼𝑧𝑧 1.3e-2 1.3e-3 7e-3 5e-2 5e-2 

𝐽𝑟 6.5e-5 6.5e-6 5e-5 1e-4 9.68e-3 

𝑑 3.13e-5 3.5e-6 3e-5 4e-5 3e-5 

𝑏 7.5e-7 7.5e-8 7e-7 8e-7 8e-7 

𝑙 0.23 0.01 0.15 0.45 0.45 

𝑚 0.65 0.05 0.55 1 0.5564 

 

The developed algorithm returns the optimized solution for the 𝑝 vector. This vector corresponds to a 

quadrotor model where the objective function is minimized and therefore its performance is less 

sensitive to the variations in the parameters' values.  

We observe that the values of the moment of inertia and the arm's length are equal to those of their upper 

boundaries. The most optimal design for a quadrotor drone is therefore probably with values higher than 

those selected, but considering the specifications of our design (defined by the designer) they are the 

optimal values in this case.  

The performances of the optimized design, obtained by the presented method are compared to those of 

the initial design as proposed by Bouabdallah's thesis (2007a) (see Table 2). Figure 5 presents the 

histogram of the distribution of the energy consumption for both the optimized design and the initial 

design.  

 

Figure 5. Comparison between the energy consumption for both the optimized and initial 
design of a quadrotor drone 

The numerical values of the distributions are compared in Table 2, where it is shown that the optimized 

design indeed obtains better results for the mean and variance of the energy consumption. 

 

Table 2. Distribution parameters comparison or the optimized and initial design of a 
quadrotor drone 

Distribution parameter 𝜇 𝜎 Objective function 

Optimized design 164 194 179 

Initial design 217 231 224 
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Figure 5 and Table 2 shows together that the optimized quadrotor drone design obtains a lower mean 

and a smaller standard deviation than the initial "functional" design. This also means that the quadrotor 

consumes less energy and is less affected by the variations of its parameters and therefore is more robust. 

The lower energy consumption can have a large positive effect on the size of the batteries. Indeed, lower 

energy consumption can lead to the use of smaller batteries or, for the same batteries, to a longer flight 

time before recharge. This can help us design smaller and more compact quadrotors or quadrotors with 

longer autonomy. 

The method applied here to a quadrotor design case can also be modified to be applied to any 

mechatronic system. It is worth noting, that we used the energy consumption as the optimization 

criterion, but any other performance metric could have been chosen by the design engineer or even a 

combination of several ones.  

5 CONCLUSION 

In this paper, an application of a standard robust design approach to a quadrotor drone was presented. 

The results showed that the optimized design obtained was more robust to variations than the initial 

"functional" design selected from literature. The effects were noticed both on the mean of the energy 

consumption distribution and the variance of this distribution. The mean of the energy consumption 

distribution was reduced by 25%. Technically, the mean represents the sum of the squared rotor speeds, 

but since it is proportional to the energy consumption, we can assume that the 25% drop is also obtained 

for the energy consumption.  

The robust design methodology used in this paper could also be applied to support the design of any 

mechatronic system in order to achieve more robust designs and allow designers to have a better control 

over the effect of uncertainties on each designs parameter of the system. The used method is based on a 

double-loop MonteCarlo simulation to analyze the effects of the design uncertainties and mainly 

optimize non-real time parameters while always considering the real-time parameters in the design loop. 

The controller used was a standard proportional derivative; however, future work will include the full 

design synthesis of the controller within the optimization loop using gains scheduling.  

To go further on this project, different optimisation algorithm and heuristics will be compared. 

Evolutionary algorithm and particle swarm optimisation seems to be promising candidate. Different 

weights and objective functions will also be tested to see their impacts on an optimal design of the drone.  
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