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Abstract 

Incremental design causes changes to an existing product by modifying or adding sub-systems. In the 

perspective of development process management, changes prolong duration and raise cost with 

increasing design change jobs. The change management of a complex product is challenging since 

changes are stochastically propagated to multiple sub-systems. The present study proposes the novel 

change management method, active batching, to accommodate the complex and uncertain characteristics 

of change propagation. Active batching composes multiple probable change requests as a batch, based 

on the prediction of change propagation. It saves cost by eliminating multiple setups and redundant 

execution. It also avoids unnecessary waiting to compose a batch, which accelerates development 

process. Numerical study on software development project validates that active batching moves Pareto 

frontier line of project performance into the direction of less cost and short duration. 
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1 INTRODUCTION 

In the fast-changing market, incremental design is widely adopted to develop new products under limited 

duration and budget. Firms are required to develop new products periodically to keep the pace of demand 

and industry clockspeed. Customers expect new products with higher performance and quality (Ollinger 

and Stahovich, 2004). Also, competitors release products with added or enhanced attributes (McMahon, 

1994). Incremental design is beneficial for companies aiming to create new generation products with 

tight development timeline. Since incremental design utilizes existing product architecture and modules, 

it takes less time and cost to develop new products with enhanced reliability (Eckert et al., 2009). 

Incremental design involves engineering changes and their propagation in the perspective of product 

development management. Incremental design enhances the utility of a new product by upgrading ex-

isting attributes or including new attributes (Koh et al., 2009). To reinforce or add product attributes, 

existing sub-systems are modified or new sub-systems are supplemented (Wyatt et al., 2009). Since 

there exists interdependency among sub-systems, modification or addition of a sub-system might lead 

to the changes of other sub-systems (Clarkson et al., 2004). Although the sub-system is not directed 

related to the enhanced or added attribute, it might be modified because of propagated changes from 

other sub-systems. 

Change management is critical for development performance, cost and duration. In complex product 

structure, the change of a certain sub-system might be propagated to multiple sub-systems within a 

product like avalanche (Eckert et al., 2004). Engineering changes generate additional design jobs to 

adjust existing sub-systems on change requests (Ahmad et al., 2010). Therefore, expenditure and dura-

tion of development project increase as engineering changes surge. However, it is difficult to control 

engineering changes since they are propagated uncertainly (Clarkson et al., 2004). The stochastic prop-

agation hinders the exact prediction of change request arrivals on each activity. The unsettled develop-

ment process is the obstacle to planning and controlling a development project for managers. 

The present study proposes the new change management method, active batching, in the incremental 

product development project. Since changes are propagated complexly, a sub-system might receive mul-

tiple change requests from other sub-systems. Existing change management models accumulate change 

requests and execute them together to retain further propagation and prevent redundant work (Terwiesch 

and Loch, 1999; Loch and Terweisch, 1999; Du et al., 2015). However, those studies cope with propa-

gation uncertainty passively by waiting for probable change requests with the criteria as the given time 

interval or the given number of changes (Nadia et al., 2006; Ahmad et al., 2010) or pausing the execution 

of change requests until propagation sources are inactivated (Maier et al., 2015). Active batching deter-

mines the batch, based on the prediction of upcoming possible change requests. To support decision, the 

present study provides the model which estimates the consequences of batching decision on duration 

and cost. In the practical perspective, the active batching provides managers the flexible planning and 

control method against changes in incremental development project. Compared to existing management 

methods, active batching moves Pareto frontier line of project performance into the direction of less cost 

and short duration. 

2 CHANGE PROPAGATION MANAGEMENT 

Change propagation management alleviates the indirect impact of incremental design on development 

process. For the given scope of incremental design, direct impact on development process is easily as-

sessed with the aforementioned analysis by clarifying corresponding activities. However, indirect im-

pact in incremental design is difficult to assess and manage. Indirect impact refers to design change jobs 

caused by propagation from directly impacted corresponding activities. The proper change management 

method prevents unnecessary design change jobs by controlling complex change propagation. Since 

change is propagated stochastically in the complex manner, change propagation management is chal-

lenging. The performance of development process, cost and duration, depends on change propagation 

management methods. 

Change propagation management is complicated due to complexity and uncertainty of change propaga-

tion. In complex product architecture, change requests are generated by multiple sub-systems and trans-

ferred via multiple sub-systems as well (Ahmad et al., 2010). Therefore, it is not trivial for a certain sub-

system to track the propagation paths from multiple change sources. Also, the change arrival is uncertain 

since change is propagated in the stochastic manner (Clarkson et al., 2004). The change management 
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plan based on the assumption of possible change requests might be invalid if the anticipated change 

request does not arrive. 

Accumulation of change requests has been introduced as the management method to save cost. A de-

velopment activity consists of setup and execution. The setup is required for engineers to be mentally 

ready for change requests as “diving deep into the problem” (Ha and Porteus, 1995; Terwiesch and 

Loch, 1999). By piling up change requests, an activity can deal with multiple change requests as a single 

job. Therefore, the setup is curtailed from multiple times to one, compared to the case that each change 

request is handled separately. Also the amount of execution can be reduced by eliminating redundant 

modification (Wynn et al., 2014). If the corresponding design space required to be changed for multiple 

change requests is overlapped, the simultaneous modification of intersection saves cost. Generally, 

amassing change requests prolongs project duration since an activity delays execution to compose the 

batch. However, under the complex change propagation, accumulation accelerates development process 

by resolving congestion (Loch and Terwiesch, 1999). When too many change requests arrive at a certain 

sub-system, overall development process is delayed since the design activity of the sub-system design 

becomes the bottleneck. Accumulation mitigates the bottleneck effect by reducing the amount of work 

and required execution time. 

Existing change management methods can be categorized as how they respond to the uncertainty of 

upcoming change requests as Figure 1. Under the strategy of pending, an activity waits for the end of 

all precedent activities which might propagate changes to itself (Maier et al., 2015). Pending is the most 

risk-averse strategy since it delays performing the change job until change propagation risk perishes. By 

minimizing propagation risk, the amount of cost is minimized whereas the project duration is prolonged. 

Prompt execution adopts change requests immediately and does not consider the uncertainty of further 

change requests (Maier et al., 2015). Prompt execution represents the non-management method as the 

comparison of other management methods. It accelerates project process since there is no waiting for 

probable forthcoming changes. However, project cost increases since it does not take advantage of cost 

saving in the accumulation of change requests. Passive batching somewhat considers forthcoming prob-

able propagation by amassing change requests for the given time interval (Loch and Terwiesch, 1999; 

Nadia et al., 2006; Ahmad et al., 2010). The cost and duration of project implemented with passive 

batching are between those of prompt execution and pending. 

 

 

Figure 1. The comparison of change management methods 

3 ACTIVE BATCHING 

The present study proposes active batching which determines the set of uncertain upcoming change 

requests as the batch. Both active batching and passive batching pile up change requests. Whereas pas-

sive batching waits for uncertain change requests for the fixed time interval or the given batch size, 

active batching composes the batch based on the anticipation of probable forthcoming change requests. 

Although pending makes a decision with the prediction of change propagation, it postpones the execu-

tion until all change sources are inactivated. The simple project consisting of three activities in Figure 2 

illustrates how active batching works. In Figure 2, activity k receives the change request from activity i 

at it . When the change request arrives, activity k needs to determine the batch scope since another 

change request from activity j might be transferred at jt . If activity k determines to compose a batch 

including the change request from activity j, it waits until jt , when change propagation becomes cer-

tain.  

Prompt execution PendingPassive batching Active batching

Accumulation of change requests

Prediction of forthcoming change requests
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Figure 2. The impact of batching decision on development process 

Like other change management methods, active batching saves cost but prolongs project duration in 

general cases. Active batching saves cost only when the change from activity j is propagated by averting 

redundant setup and execution of activity k. The cost of further propagation from activity k is also re-

duced. The amount of expected cost saving is assessed as 

[ ] ( 1| 1) ( ),k jE C p c c sc ec        (1) 

where ( 1| 1)k jp c c   denotes the probability of change occurrence of activity k, 1kc  , under the con-

dition of change occurrence of activity j, 1jc  . sc  and ec  indicate the amount of expected cost 

saving for setup and execution, respectively. When the change is not transferred from activity j, the end 

of activity k is delayed as the amount of postponement, 0d . In the case of occurrence, activity k under 

active batching finishes late as the amount of 1d  since it conducts the larger modification job from 

two change sources. When the change request from activity j to activity k arrives earlier than the end of 

activity k, activity k is congested with multiple change requests. In the case of congestion, active batch-

ing reduces project duration, which results in the minus value of 1d . The expected delayed duration 

due to active batching is assessed as 

0 1[ ] ( 1| 1) ( 0 | 1) .k j k jE D p c c d p c c d          (2) 

The active batching decision includes the tradeoff between duration and cost of the project. Aggressive 

batching decision saves cost but prolongs duration. The present study proposes the coefficient of relative 

value on duration,  , as the criteria of active batching decision. If Inequality (3) is satisfied, the up-

coming change is included in the batch since the expected value of cost saving is higher than that of 

activity delay. 

[ ] [ ].E D E C      (3) 

As   increases, an upcoming change request is unlikely to be included in the batch since the project 

manager puts emphasis on short project duration rather than low development cost. 

Active batching decision is made in three steps as Figure 3. In the figure, 
x
jc  denotes the xth change job 

of activity j. When a change request arrives at  (1)it b , activity i determines the scope of a batch. To 

forecast upcoming change requests, definite changes are searched as the sources of change propagation 

to activity i. Definite changes of the focal activity are defined as the occurred changes of precedent 

activities which can propagate changes to the focal activity. Intermediate changes propagated from def-

inite changes are identified with information including arrival time, occurrence probability and impact. 

Finally, the batch set is determined among batch candidates, forthcoming change requests, by consider-

ing tradeoff between development delay and cost saving. ( )iB m denotes activity i’s batch set consisting 

of m batch candidates. 

i

j

k

i

j

kk

i

j

k

i

j

k

No batching Batching No batching Batching

it it jt
it jt

it jt
ktktjt

kt
'

kt

0d 1d

(a) Change from j is propagated (b) Change request from j is not propagated

616



ICED17 

 

Figure 3. Active batching decision 

Two models are provided to support active batching decision. The first one is propagation prediction 

model which estimates the essential information of upcoming requests. Since change propagation is 

complex, propagation paths from sources to batch candidates are difficult to be tracked. The second one 

is batching assessment model assessing the impact of batching decision in terms of duration and cost. 

Since multiple change requests are transferred to an activity, the sophisticated model is needed to assess 

the combined change impact from multiple sources of sub-systems. 

The present study utilizes pair-wise activity dependency information for establishing two aforemen-

tioned change models. Design structure matrix is widely used for representing dependency information 

between development activities (Browning, 2015). Design structure matrix contains change impact and 

likelihood between the each pair of activities as Figure 4. In Figure 4, CL(i,j) refers to the probability 

that the change of activity j causes the change of activity i. If the change is occurred, activity i needs to 

conduct modification work as the portion of CI(i,j) to the amount of nominal work. The simplest method 

to obtain impact and likelihood is to interview experts (Browning and Eppinger, 2002; Clarkson et al., 

2004). If the company has sufficient information of change orders in product data management system, 

dependency information can be gathered from the system (Giffin et al., 2009; Gokpinar et al., 2010). 

 

Figure 4. Design structure matrix 

3.1 Propagation prediction model 

Propagation prediction model tracks change propagation from a change source, a definite change, to a 

batch candidate. Since change propagation is complex, a change might be propagated via multiple in-

termediate changes until a batch candidate. Figure 5 illustrates the example of change propagation from 

the definite change to a batch candidate. The xth change of activity s, 
x
sc , is the change source. The 

change might be propagated to an intermediate change, 
y
nc , and finally to a batch candidate, ( )ib m . 

( )ib m  denotes the mth batch candidate of activity i. 

 

Figure 5. Propagation prediction 
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The likelihood and impact of a batch candidate are estimated as the multiplication of likelihoods and 

impacts along the change path. Since change propagation between 
x
sc  to 

y
nc  and 

y
nc  to ( )ib m  are inde-

pendent, the realization likelihood of ( )ib m  is the product of CL(n,s) and CL(i,n). Therefore, realization 

likelihood of a batch candidate ( )ib m  with the given change source 
x
sc  can be assessed as 

 
1

1 1

1

( ) ( , ), ( , ),
q

i l l q

l

p b m CL a a a s a i






    (4) 

where la  denotes the activity number of the lth change along the change path and q indicates the total 

number of changes in the path. The first changed activity is the source s and the final one is the batch 

activity i. The impact of change is mitigated along the propagation path since the amount of change job 

is proportional to the impact of direct precedent change job in propagation (Kang and Hong, 2009). If 

the precedent activity n modified its design as the portion of CI(n,s), its successive activity i needs to 

execute the design job as the portion of CI(n,s)×CI(i,n). The amount of a change job of activity i is 

proportional to the changed portion of precedent activity n as CI(n,s). In this manner, the mitigated 

impact of a batch candidate is calculated as 

 
1

1 1

1

( ) ( , ), ( , ).
q

i l l q

l

MI b m CI a a a s a i






    (5) 

3.2 Batching assessment model 

Batching assessment model estimates the impact and realization likelihood of a batch. The realization 

likelihood and impact of change propagation from multiple sources to an activity might be inferred from 

the change history of previous product development projects. However, it takes too much effort and 

time to infer the information since the amount of data is very large. Also data is stored in different 

systems, which makes practitioners difficult to access, mine and analyze (Giffin et al., 2009; Gokpinar, 

et al., 2010). Therefore, the present paper utilizes pair-wise dependency information to estimate the 

impact and realization likelihood of a batch with propagation prediction model as the alternative of 

inference from the change history. 

The realization likelihood of a batch is assessed with noisy-OR model. Based on the assumption of 

causal independence among parent causes to a child effect, noisy-OR model estimates the realization 

likelihood of effect when multiple causes exist (Hackerman and Breese, 1996). Since multiple change 

sources cause changes to a batch activity in the present study, noisy-OR model is applicable under the 

assumption of causal independence (Lee and Hong, 2015). In noisy-OR model, the batch is executed 

when at least one batch candidate is realized. Therefore, realization likelihood of the batch of activity i 

iB  is estimated as 

    
1

( ) 1 1 ( )
m

i i

j

RL B m p b j


    (6) 

where m denotes the number of batch candidates. 

The expected impact of multiple change sources is obtained by considering all possible propagation 

cases. Since the realization of each batch candidate is assumed as independent, all cases need to be 

considered except the all-non-propagation case. The expected impact of a batch is assessed as summat-

ing the products of probability and impact for all possible cases, expressed as 

      
( , ') ( ) ( ) '

( ) 1 ( ) ( , )
i i

i i i

G G b j G b k G

EI B p b j p b k I i G
  

  
     

  
    (7) 

G indicates the set of realized batch candidates. The elements in G’ do not occur. ( , )I i G  denotes the 

combined change impact of set G on activity i. 

In estimating the expected impact of a batch, it is important to assess the combined change impact, 

( , )I i G , from multiple change sources. Wynn (2014) proposed information space to logically assess the 
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impact of change caused by multiple precedent activities. The information space of activity i can be 

represented as Venn diagram in Figure 6. Among the design space of activity i iS , a certain space ( , )i kS  

is influenced by precedent activity k. When multiple precedent activities cause the change to activity i, 

the impact is the union of influenced spaces.  

 

Figure 6. Illustration of design space 

The present study proposes the approximation method to assess the combined change impact. The 

amount of combined change impact possesses the lower and upper bound. When the largest influenced 

space includes all other influenced spaces, the area of combined change impact is equivalent to the 

largest influenced space.  

( , )max
( , )

i v
v

L

i

S
I i G

S
  (8) 

v indicates a precedent change of a batch candidate in the batch set. iS  denotes the size of information 

space of activity i. For example, the size of a design activity can be estimated as the number of design 

parameters determined by the activity. On the other hand, the size of combined impact area is the sum-

mation of all influenced spaces when all influenced spaces are disjoint.  

( , )

( , ) max ,1
i v

v
U

i

S

I i G
S

 
 

  
  


 (9) 

The combined change impact ranges from the lower bound and the upper bound as 

 ( , ) ( , ) ( , ) ( , ) , [0,1]U U LI i G I i G I i G I i G      (10) 

where   denotes the coefficient of saved redundant execution. As the coefficient increases, the com-

bined impact decreases to the lower bound. 

4 NUMERICAL STUDY 

In this chapter, active batching is compared to existing project management methods, prompt execution, 

passive management and pension. Management methods are implemented on software development 

project investigated by Fu et al. (2012). The project consists of 12 sub-systems and corresponding 12 

activities under one-to-one mapping between a module and a development activity. The information of 

change propagation, change likelihood and change impact, is represented in Figure 7. The cost and du-

ration of each activity is illustrated as Table 1. The portion of setup duration and cost are assumed as 

0.2 for all activities. For example, setup takes 1 day for design activity whose nominal duration is 5 

days. 

Table 1. Cost and duration of design activities (Fu et al., 2012) 

Activity number 1 2 3 4 5 6 7 8 9 10 11 12 

Cost 8 9 6 11 45 9 8 20 5 14 28 9 

Duration 8 10 4 8 15 8 10 16 5 10 15 8 

( , )i kS
iS

( , )i lS ( , )i nS
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Figure 7. Change information of software development project (Fu et al., 2012) 

For the given modified module set of incremental designs, the cost and duration of different management 

methods are compared. Figure 8 illustrates development process of incremental design with different 

management methods. The changed modules and corresponding activities are set as {2, 3, 5, 6, 8, 10}. 

Prompt execution provides the shortest development duration. However, it results in the highest cost 

since the amount of design work is the largest. Design jobs relentlessly continue since change propaga-

tion is not controlled. Pension uses the smallest development resource, whereas it results in the longest 

project duration. The results of passive batching reside between prompt execution and pension by accu-

mulating engineering changes. For example, activity 3 executes redesign at time 10 by accumulating 

changes from activity 10 and 4 since batch interval is set as 5, 5i  . Active batching determines the 

commencement of design based on the update of change propagation information. For example, activity 

6 begins at the end of activity 10. Originally, batch set was supposed to be composed of change requests 

from activity 3 and 10. Since change request from activity 10 is not realized, activity 6 begins its work 

by adopting the change request from activity 3. 

 

Figure 8. Development process with different change management methods 

Active batching moves the Pareto frontier line of passive batching into the direction of less cost and 

short duration. Figure 9 plots the averaged results of development projects. Since change propagation 

occurs stochastically, the averaged value is earned by Monte Carlo simulation. For each management 

method, simulation runs 10,000 times. For the same management method, the results depend on mana-
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gerial coefficients. For active batching, low importance on the coefficient of value on development du-

ration   increases cost and decreases duration. Wide batch interval of passive batching i leads to similar 

results. However, some managerial coefficient results in dominated performance as Figure 9. 

 

Figure 9. Project performance with different change management methods 

5 CONCLUSION 

The present paper presents the risk management method for incremental design. Incremental design is 

suitable for companies releasing products periodically since incremental design maintains product ar-

chitecture and most modules. Companies are able to develop a new-generation product within short 

duration. Although incremental design reduces development burden, modification and addition of mod-

ules are required to enhance product utility. The change of modules in complex product leads propaga-

tion of engineering changes in development process. Change propagation in development process gen-

erates additional change jobs, which results in the prolonged duration and increasing cost. However, the 

prediction of change propagation is the overwhelming task since changes are propagated stochastically 

in the complex manner. Therefore, change management in incremental design has been the critical issue. 

The present paper proposes the novel change management method, active batching. The existing change 

management method, passive batching, acknowledges the existence of multiple change requests on the 

activity. It controls propagation by batching change requests with the criteria as the given time interval 

or the given batch size. Active batching determines the scope of batch based on the prediction of prob-

able upcoming change requests. In the theoretic perspective, two models named divergence model and 

convergence model were developed to track change propagation and assess the impact of batching de-

cision. Practically, active batching provides better performance than passive batching in terms of both 

duration and cost. Project managers are able to take the advantage of flexible decision with updated 

propagation information. 
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