21 INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING CONFERENCE,
DSM 2019

MONTEREY, CA, USA, 23 —25 September, 2019

Many-Valued and Many-Sorted Structure Relations
Patrik Eklund', Mats Johansson', Magnus Lofstrand?, Michael Winter?

}.Umeé University, Department of Computing Science, Umed, Sweden
2Orebro University, School of Science and Technology, Orebro, Sweden
3Brock University, Department of Computer Science, St. Catharines, Ontario, Canada

Abstract: System-of-systems engineering and related models of engineering design
require intertwining of structures, respectively, at least for components in products,
engineering and business activities, and people involved in those activities as also
specifically connected with production and its management. In this paper we describe
the logical machinery of system-of-systems engineering and related models of
engineering design in sufficient so as to enable to describe the algebraic foundation
of the many-valued logic that is inherent in these systems and structures. We are thus
essentially unravelling the hidden and underlying logic of these systems and their
related information and process structures, focusing on interaction between elements
of the system.

Keywords: Information, many-valued logic, process, system-of-systems

1 Introduction

System-of-systems engineering and related models of engineering design require
intertwining of structures, respectively, at least for components in products, engineering
and business activities, and people involved in those activities as also specifically
connected with production and its management.

Products and components representing the ‘what’ of this complex system, people are
‘who’, and activities roughly ‘how’. The ‘where’ and ‘why’ add further complexity to the
overall view of system-of-systems engineering and related models of engineering design.
The ‘what’ and ‘who’ relates more to information, whereas ‘where’ and ‘how’ is more
related to production and business processes. The complementing ‘why’ provides related
logical statements and criteria based on ‘what’ and ‘who’ and as situated within ‘where’
and ‘how’. Logically speaking, ‘what’ (products and components) and ‘who’ (people) are
detailed by their features and attributes, whereas ‘how’ and ‘why’ is supported by a
guideline based on sets and structures of logical rules.

Information is either generally valued or truth valued. General values include numbers,
ordinals and symbols, as subjected to functional (non-logical) operation, whereas truth
values appear as binary or many-valued as subjected to logical operation.

In this paper we describe the logical machinery of system-of-systems engineering and
related models of engineering design in sufficient so as to enable to describe the algebraic
foundation of the many-valued logic that is inherent in these systems and structures. We
are thus essentially unravelling the hidden and underlying logic of these systems and their
related information and process structures.

DSM 2019 141

Part IV: New Methods and Algorithms

2 Logic

In this section we explain our logical machinery in sufficient detail so as to enable to
describe the algebraic foundation of our logical approach. Before outlining our structure of
many-sorted terms, we should point out the importance of making a clear distinction
between expressions (logical ferms) and statements (logical sentences or formulae).

A logical expression, or a term, comes from an n-ary operator w : s; X ... X s, = s, where
S1,-+ Sp,are the input types (sorts) of the operator, and s is the output type. If ¢4, ..., t,, are
terms of respective types sy,.., Sp, denoted t; :: s, 1 = 1, ..., n, then w(ty, ..., t,) is a term
of type s, denoted w(ty,...,t,) :* s. The output type may represent truth value, e.g.,
denoted as boo1, so that we may have expressions like S(x,y) :: bool. Such terms are,
in standard first-order logic (predicate calculus), frequently called propositions. However,
as a proposition, or statement, it is logically quite different from formulae like 3x. S(x, y).
Standard first-order logic calls S(x,y) and 3x.S(x, y) both formulas, but, in our approach
to term constructions (Eklund, Galan, Helgesson and Kortelainen, 2014), S(x,y) as a
proposition is an ‘expression’ (term), provided by a term construction, whereas 3x. S(x, y)
is a ‘formula’. Note also how the basic design matrix in DSM (Eppinger and Browning,
2012) as a binary relation R € X X X can be equivalently represented as a mapping p :
X X X — 2 where 2 denotes the two-pointed set {0,1} (or {false, true}), i.e., representing
binary (two-valued) truth. In this case, p can be seen as a candidate for a semantic
interpretation of S in S(x,y) :: bool, with {0,1} being the semantic interpretation of the
type bool.

In design structures, order and many-valuedness are important. In logic it is an interesting
question whether order precedes many-valuedness, or vice versa. In (Eklund, Gutiérrez
Garcia, Hohle and Kortelainen, 2017) we argue that order underlies many-valuedness. We
further show how category theory as a metalanguage, and monoidal closed categories in
particular, underlies logical considerations related to order and many-valuedness. As
pointed out in (Eklund, Johansson, Kortelainen and Salminen, 2017), if we extend this
binary truth situation to many-valued logic, i.e., we extend 2 to Q, where Q is e.g. a non-
commutative quantale (Eklund, Gutiérrez Garcia, Hohle and Kortelainen, 2017), we have
a many-valued relation p : X X X = Q and non-commutativity of the quantale means that
aggregations will consider the order among elements in Q.

In (Eppinger, Whitney, Smith and Gebala, 1994), a certain Q is introduced, when dealing
with the issue of how to “document the technical interactions among the engineering
parameters”. In what is called the “Task-Level Design Description” there is potentially a
Q = {Input, Feedback, Control, Addition}, but respective elements in Q are apparently
not treated as qualifications of the same type, i.e., as a many-valuedness, but rather as a
many-typedness of respective two-valued qualifications. Indeed, that Q is not assumed to
have any algebraic structure. The complementing “Parameter-Level Design Description”
and its qualification is two-valued only.

On the issue of hiding and unravelling information, note how the expression w(ty, ..., t,)
and its related value represents both the expression and the value. In the case of 2 + 2 = 4,
the value of the expression 2 + 2 is 4. However, if we focus only on the value, we hide the
expression. The value 4 is the value also for the expression 1 + 3. So if we maintain the
expression 2 + 2, we can always compute its value, but if we only store the value 4, we

142 DSM 2019

P. Eklund, M. Johansson, M. Lofstrand, M. Winter

cannot know which expression leads to that value. It might be tempting to introduce a
variable x,, to carry such values, and we might have x,, = 4. The clearly x,, hides the
expression 2 + 2, or w(ty, ..., t,), in the general case.

We now look at a concrete example. For engine lubrication and engine oils, it is important
that the oil is not contaminated. If it is, contamination is not binary, but is a degree. Oil
may contain unwanted particles, and it may contain water. Both lead to contamination. If
we would capture the contamination degree using a single variable

XoilContamination
we will obviously hide valuable information provided by unwanted particles and water. On
the other hand, if we have expressions for particle count and water amount, then

oilContamination (particle Count(filter), waterSensor (location))

represents the value of oil contamination as computed based on particle count and amount
of water in the oil, with values provided by suitable sensors, represented, respectively, by
operators like

particleCount : engID = nat
and
waterSensor : engLocID — num
This is then based on the operators
oilContamination : nat X num = bool
particleCount : engID = nat
waterSensor : engLocID — num
filter : — :engID
location : — engLocID
The question “Is oil contamined?” is then a (many-valued logic truth) value of the
expression
oilContamination(particleCount (Filter), waterSensor (Position))
with the value of the expression being of type bool, i.e.,
oilContamination(particleCount(Filter), WaterSensor(Position)) it bool

In a simple and information hiding approach it is clearly easy to discretize to binary truth
and use an expression free approach only using variables. We could have

Xoilcontamination ** POOL, XparticleCount ** bool, Xyatersensor :* ool
and simple use a proposition like

Xoilcontamination = xparticleCount AND XwaterSensor

where AND: bool X bool = bool corresponds to logical conjunction. In a binary
situation, that AND is unique, but in many-valued situations, there are many alternatives
for logical conjunction. Moreover, all such conjunctions need not be commutative. In the
binary case we always have x; AND x, = x, AND x;. In our example, we may ask which
one 1is more contaminating, particles or water. In another example like
Xsuspension AND Xyneer and Xyypeer AND Xgyspension 1t 1S quite clear that they are not the
same as failure in suspension is more likely affect the tires of the wheel than the other way

DSM 2019 143

Part IV: New Methods and Algorithms

around. If the conjunction AND in a many-valued setting is represented by the
multiplication in a non-commutative quantale, then aggregation of ordered observations
will be handled within that algebraic foundation represented by quantales.

Now adding e.g. oilViscosity(...) :: bool it is obvious how information is very much
unraveled in a logical expression like

oilContamination(...) AND oilViscosity(...)

as compared to having binary truth in fault trees having propositional expressions like

(xparticleCOMnt AND xwaterSensor) AND xoilViscosity

which hides counters and sensors, even if capable of e.g. providing risk values related to
the functioning of the engine, but not being able to explain it, or locate the underlying
reasons for elevated risk values. Note have this unravels a straightforward and information
hiding approach where there would be a a single parameter-free variable like
x_oilContamination to carry a value in a chosen scale for degrees of contaminations. Note
also that the notion of ‘Type’ in (Pimmler, 1994) is intuitively comparable but not entirely
equal to ‘type’ in our sense, i.¢., as in many-sorted signature based logic and type theory.

3 The term construction

The category theoretical construction of one-sorted terms over a signature was given in
(Eklund and Géhler, 1992) describing it as a term functor extendable to a monad, and doing
so over the category Set of sets and functions. In (Eklund, Galan, Helgesson and
Kortelainen, 2014) we extended the term functor and monad construction to be many-
sorted and be applied over any monoidal closed category, including the Goguen category
Set(Q), with Q being a quantale.

In this section we briefly outline the many-sorted term construction in order to be able to
describe many-valuedness as appearing in the DSM matrix, to be described in section 4.

Terms are formed over a given signature X = (S, 1), where S is a set of types (sorts), and
Q is a set of operators. The operator set may be many-valued, so that operators are attached
with uncertainties, which leads to terms becoming attached with uncertainties. Informally
we may denote the term functor over Set as Ty : Set = Set, not considering that we
should use multi-sorted categories. For detail, see (Eklund, Galan, Helgesson and
Kortelainen, 2014). An n-ary operator w € { is denoted as w : s X .. X s, = s, where
S1,9 Sn,S € S. Note that variables must now be sorted, so that a variable x must be
connected with a particular type. The set of variables of type s is denoted X, and the set
of all terms of type s is denoted Ty (X,)es- For detail concerning the categorical term
construction, see (Eklund and Géhler, 1992) and (Eklund, Galan, Helgesson and
Kortelainen, 2014).

4 Interaction between elements

The “documentation of interaction between elements” as described in (Pimmler, 1994),
and similarly in (Pimmler and Eppinger, 1994) is more of an informal and intuitive

144 DSM 2019

P. Eklund, M. Johansson, M. Lofstrand, M. Winter

documentation than a formal and many-valued logical description of interaction. It is based
on {Detrimental, Undesired, Indif ferent, Desired, Required}, an ordered chain as a
scale, equivalently annotated as a score {—2,—1,0,1,2}, and then further detailed,
respectively, for Spatial Scale, Energy Scale, Information Scale and Materials Scale. For
instance, in the case of Spatial Scale and Desired (+1), the verbal understanding of the scale
value is “physical adjacency is beneficial, but not absolutely necessary for functionality”.
It is indeed “necessary”, but not “absolutely necessary”. “Documentation” in the sense of
(Pimmler, 1994) embraces 'function' descriptions for two related elements, like Radiator
and Engine Fan, for which their 'relationship' is described. That relationship is then scored
by a quadruple like (4+2,0,0, +2), i.e., the Spatial and Materials scores are 42, whereas the
Energy and Information scores are 0.

More formally, this means there are four different relations on the set X of elements, where
Radiator and Engine Fan are such elements, which can be denoted pgpatiar> PEnergys
Pinformation @d Pyaterias> respectively. In the example above, we would have

Pspatiat (Radiator, EngineFan) = +2

We should note that (Pimmler, 1994) and (Pimmler and Eppinger, 1994) do not classify or
grade functioning as such. The functioning of the radiator is briefly described as “the
radiator dissipates excess engine heat, via forced convection, to the outside surrounding”,
where “forced convection” is obviously the key feature in that functioning. There is e.g. no
‘grade of convection’ or anything similar that would explicitly grade the functioning of the
radiator.

Note also that there is no aggregation of the four scores into a common score of the relation
between those two elements. We can introduce a tupled relation

p= (pSpatial' pEnergy' plnformation: pMaterial)

so that we have
p(Radiator, EngineFan) = (+2,0,0, +2)

If we denote {—2,—1,0,1,2} by L, and write E for the set of all elements, then p has the
form p : E X E - L*. Viewed in the framework of out term construction, we could see
qualification annotated to the Radiator as the value of the expression Radiator(...), being
part of a term set Ty ;(X,),es With Ty being a functor over Set rather than over Set(Q),
which enables to invoke many-valued grading of expressions. For instance, Q could be the
three-valued “traffic light”, so that the functioning of a radiator would be classified not just
either as functioning or not functioning, but sometimes being in a transition state between
the two. Indeed, this option of additional grading structure is not included in (Pimmler,
1994). Nor is it included in (Eppinger and Pimmler, 1994), which is basically a summary
or (Pimmler, 1994), or in (Browning, 2001).
We could now also enrich the (Pimmler, 1994) model and make the set
{Spatial, Energy, Information, Material} to become a subset of the set S of
types in the underlying signature. Then Radiator(...) is viewed as an expression,
respectively, from Spatial, Energy, Information and Materials point of view. So, with
Radiator(...) and EngineFan(...) as terms e.g. in Ty g.¢141 (X,)ues, We would need to
introduce the relation pgpq¢iq; as

pSpatial : TE,Spatial(Xu)uES X TE,Spatial(Xu)uES - L

DSM 2019 145

Part IV: New Methods and Algorithms

Crossover between the types now immediately comes into play, but this aspects is not
considered in (Pimmler, 1994), which has a focus on interaction between elements, rather
than interaction between scores. In (Pimmler, 1994), Spatial, Energy, Information and
Materials are all seen in light of functioning. The distinction between fault and functioning,
as outlined in (Eklund and Lofstrand, 2016), is not made explicit. Instead of types
{spatial,Energy, Information,Material} we may also have only
{Fault, Functioning}, and introduce crossover relations like

p: TZ,Fault(Xu)uES X TZ,Functioning(Xu)uES - Q
with Q as a suitable quantale.

The set of types can be ordered, as also indicated in (Pimmler, 1994), namely, that
Spatial may have a special role in many applications.

Note how the many-typedness in (Eppinger, Whitney, Smith and Gebala, 1994) is more
like a relation

p: EXE - Zlnput X 2Feedback X 2Control X 2Addition
and indeed not intended to be seen as a many-valued relation
p+ E X E - {Input, Feedback, Control, Addition}

Many-valued extensions of the kind of enrichment appearing in (Pimmler, 1994) model
now has bearing on “clustering elements into chunks” as outlined, but not detailed, in
(Pimmler, 1994). These clusters are indeed called “chunks” in (Pimmler, 1994), where
(Eppinger, Whitney, Smith and Gebala, 1994) prefers to call them “blocks”. These clusters
are subsets A € X together with their relations p, : A X A — 2 restricted from the relation
p: X XX - 2sothat p,(a,,a;) = play,ay).

The notion of “clustering” in (Pimmler, 1994) is not made precise, and the thesis basically
states that there are several approaches to clustering interaction matrices. There is a
reference to (Eppinger, Whitney, Smith and Gebala, 1994), which was listed as a
‘forthcoming paper’. In that (Eppinger, Whitney, Smith and Gebala, 1994) paper,
clustering as resulting also in ordering elements in general, ordering elements in blocks,
and ordering blocks, is decribed in more detail, with references back to (Steward, 1965)
and (Steward, 1981), but not further back to precedence matrices studied by (Barankin,
1953), and thereafter by (Marimont, 1959) and (Harary, 1960). In these historical path
involving precedence matrices, relations are two-valued, and investigated graph-
theoretically rather than logically. In these precedence matrices, X remains as a set of points
not unravelled with respect to their possible content or appearance as expressions or terms,
and p : X X X — 2 remains as a two-valued relation. Clustering is outside the scope of this
paper, but a natural next step of further investigation. We should note that there is a wide
range of approaches to clustering. Generally speaking, elements in a cluster share common
features, and those features can be represented in various ways, numerically as well as
logically. Many-valuedness should also be considered as an extension of imposing logical
features with binary truth only. Many-valued clustering algorithms can be discretized to
apply for many-valued relations over L*, or over a suitable quantale Q, given a
homomorphism h : L* - Q. Directed graph (digraph) based clustering further has to
distinguish between edge and node based clustering, or a mixture of the two. Digraph based
clustering e.g. as in (Harary, 1960) is indeed graph-theoretical rather than logical and
espression based, thus paying less attention expression and terms.

146 DSM 2019

P. Eklund, M. Johansson, M. Lofstrand, M. Winter

Relations between elements may lead to clusters, and thereby the distinction between
elements and conglomerates of elements become apparent and subject to consideration.
Algebraic properties of elements and sets provide information structure for subsequent
logical treatments. Topological nearness of elements and products, as well as people and
teams, are suitably modelled involving topological notions like neighbourhood, entourage,
proximity and nearness. Entourages in uniform spaces are intuitively viewed two-
dimensional or ‘relational” neighbourhoods. Nearness (Herrlich, 1974) extends
proximities, modelling proximity of sets rather than metrically of elements. Topology in
this application context can be seen as the abstracted notion of geometry and metric spaces,
analyzing proximity and nearness from the viewpoint closer to the notion of contact
relations and in (Diintsch and Winter, 2004) and (Diintsch and Winter, 2005), and as in this
application context briefly outlined in (Johansson, Eklund, Kortelainen and Winter, 2018)
and (Eklund, Kortelainen and Winter, 2019).

Multiple DSM domains, or multidomain matrices (MDM), involving component (Co),
people (Pe) and activity (Ac), as described e.g. in (Browning, 2001), (Maurer, 2007) and
(Eppinger and Browning, 2012), require elements in respective element sets X¢,, Xp, and
X to be related. Within the domain of components, a components relation is of the form
Reoco € Xco X Xco, Whereas a relation between components and activity is of the form
Reope € Xco X Xy In the case of Reype, equivalently written as peoac @ Xco X Xae = 2,
we may want to assess quality for each component and production step (action) as weighed
against the added value and the risk of upsetting the customer. We might then introduce
the legend

A = {Quality, MaterialValue, Manuf acturingValue, CustomerSatisfaction}

each item in the legend having a many-valued attribution from the many-valued truth set
L = {To,Se, Mo, Mi, No}, so that many-valued relation between components and activities
appears like pcoac * Xco X X4 — LA. Relational composition then immediately comes into
play. We might have domain relation R, ¢, and Rp,p,, together with multidomain relations
Reoac and Ry.p,, enabling to arrive at relational compositions like Reyeo © Reoac © Racpes
which in a many-valued setting will involve mappings between many-valuedness domains.
This many-valued relational algebra is outside the scope of this paper, but will be
developed in application oriented settings in future papers.

DSM and many-valuedness in practice

There are indeed many cases where a DSM may be combined with many-valuedness in
order to achieve logic decisions that takes regard of overall consequences. A typical
example is when implementing contactless quality measurements in an automated
production line. Every time a robot handles a production article it will be known from
which perspective an item is seen from a fixed point in any given moment. This is due to
the need for the robot to follow its programming. Even though the robot may handle
different articles, each article will need a specific programming, it will still be possible to
know what objects are observed and in which way. Should a camera or other contactless
sensor be placed next to the robots working area it will be possible to make observations
of each object it handles, either passively or actively. Passively means that observations

DSM 2019 147

Part IV: New Methods and Algorithms

are made during the robots normal handling or, in the active case, the robot could move the
object near a camera and actively show it from certain angles making the observations
more accurate. There are ways to make several kinds of quality related measurements using
cameras or similar sensors. Surface roughness, angles, diameters of holes, silhouettes or
colours are just some examples. When the technical equipment is in place there will still
be some issues to deal with. One being how to define quality, one 1s how to quantify quality
and one being how to assess the impact of the measurement regarding the amount of
manufacturing value that has been put in to it. For each production item there must be a
rule base that clearly defines the parameters it needs to fulfil in order to be a functional
article. For some articles the parameters may be very strict and for others they may be quite
loose. Also the parameters may have different tolerances for a single object depending on
its purpose and the next step in the production. One example is that holes might have very
strict tolerances since it might be the place for a ball bearing seating while pressed angles
might have very wide tolerances since they might be there for welding the article in to place
and be forced in to place using a fixture.

Considering the quantification of the quality of an object the scale could be different for
different parts of a production line and also differ from object to object. For simple objects
like punched spacers, with very little production value added, there might be just two
options; approved or not approved and the consequences of discarding individual items
will likely be infinitesimal. For a production item that have gone through further production
steps, like punch, fold and press, there might be a need to further refine the scale; approved,
not approved or correction/manual inspection needed. There could be a chance that the
original fold occasionally gets out of shape during press due to tensions in the materials
and that it is deemed defendable to manually adjust objects with this specific deviation.
Then we do not have a binary value but a level of functionality; fully functional, functional
with correction, not functional. The corrections does not necessarily have to be made before
the next step in the production, sometimes corrections can be made at a later stage, this
makes it necessary to have an infrastructure that can connect a specific quality evaluation
to a specific production item. Depending on the amount of value added to a specific
production item, the economic consequences of simply discarding an item will wary e.g.
in quantification of value-adding by manufacturing metrology, as described in (Savio,
2012). This means that after a certain point it will not be financially sustainable to just use
a scale of faulty or functioning. Something more accurate is needed. The level of
functionality used previously in the article is a good analogy but might be renamed into the
level of correction. A production item with much added value might in the later stages of
production have accumulated several points where correction is needed in order to achieve
the level of quality that the customer demands. The total value of the item will decide the
amount of correction that may be put in to it without the manufacturer risking its profit.
The lost profit must also be put in relevance with the consequences of a missed shipment.
In some cases it might be worth losing money on a single item in order to fulfil a larger
customer contract. In this article we argue that a DSM could be a useful tool to keep control
of all of these dependencies. Each product that a manufacturer makes will need its own
DSM in order to optimise the actions after each quality measure.

148 DSM 2019

P. Eklund, M. Johansson, M. Lofstrand, M. Winter

Acknowledgement

This work is carried out within the projects Production Centred Maintenance (PCM) for
real time predictive maintenance decision support to maximise production efficiency,
funded by the Swedish Knowledge Foundation (Stiftelsen for kunskaps- och
kompetensutveckling), 4 digital twin to support sustainable and available production as a
service (DT-SAPS), funded by Produktion2030, the Strategic innovation programme for
sustainable production in Sweden, and NORDIC Icing Center of Expertise (NoICE), funded
by the the Interreg Botnia-Atlantica 2014-2020 programme. We gratefully acknowledge
the support and funding.

References

Barankin, E.W., 1953. Precedence matrices, University of California Management Sciences
Research Project, Research Report No. 26.

Browning, T.R., 2001. Applying the design structure matrix to system decomposition and integration
problems: A review and new directions, IEEE Trans. Engneering Management 48 No. 3,
292-306.

Diintsch, 1., Winter, M., 2004. Algebraization and representation of mereotopological structures,
JoRMICS 1, pp. 161-180.

Diintsch, 1., Winter, M., 2005. A representation theorem for boolean contact algebras, Theoretical
Computer Science 347(3), pp. 498-512.

Eklund, P., Gahler, W., 1992, Fuzzy Filter Functors and Convergence, Applications of category
theory to fuzzy subsets (ed. S. E. Rodabaugh, E. P. Klement, U. Hohle), Theory and
Decision Library B, Kluwer, 109-136.

Eklund, P., Galan, M.A., Helgesson, R., Kortelainen, J., 2014. Fuzzy terms, Fuzzy Sets and Systems
256, 211-235.

Eklund, P., Gutiérrez Garcia, J., Hohle, U., Kortelainen, J., 2018. Semigroups in complete lattices:
Quantales, modules and related topics, Developments in Mathematics 54, Springer.

Eklund, P., Johansson, M., Kortelainen, J., Salminen, V., 2017. The logic of DSM, In: Understand,
Innovate, and Manage your Complex System!, Proceedings of the 19th International DSM
Conference (Eds. K. Holttda-Otto, T. R. Browning, S. D. Eppinger, L. Becerril), Espoo
(Finland), 11-13 September 2017, 25-31.

Eklund, P. Kortelainen, J., Winter, M., 2019. Contact and influence between objects in a system-of-
systems (extended abstract), LINZ2019, 38th Linz Seminar on Fuzzy Set Theory, Linz,
Austria, February 5-8.

Eklund, P., Lofstrand, M., 2016. Many-valued logic in manufacturing, Position Papers of the 2016
Federated Conference on Computer Science and Information Systems (FedCSIS), ACSIS
9 (2016), 11-17.

Eppinger, S.D., Browning. T.R., 2012. Engincering Systems: Design Matrix Methods and
Applications, MIT Press.

Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A, 1994. A model-based method for
organizing tasks in product development, Research in Engineering Design 6, 1-13.

Harary, F., 1960. On the consistency of precedence matrices, J. ACM 7 (3), 255-259.

Eklund, P., Galan, M.A., Helgesson, R., Kortelainen, J., 2014. Fuzzy terms, Fuzzy Sets and Systems
256, 211-235.

Eklund, P., Gutiérrez Garcia, J., Hohle, U., Kortelainen, J., 2018. Semigroups in Complete Lattices:
Quantales, Modules and Related Topics, Developments in Mathematics 54, Springer, 2018.

DSM 2019 149

Part IV: New Methods and Algorithms

Eppinger, S.D., Browning. T.R., 2012. Engineering Systems: Design Matrix Methods and
Applications, MIT Press.

Herrlich, H., 1974. A concept of nearness, General Topology and its Applications 5, 191-212.

Johansson, M., Eklund, P., Kortelainen, J., Winter, M., 2018. The algebra, logic and topology of
System-of-Systems, Proc. 20th International Dependency and Structure Modeling (DSM)
Conference, Trieste (Italy), 15-17 October 2018, vol. 20, pp. 195-202.

Marimont, R.B., 1959. A new method of checking consistency of precedence matrices, J. Assoc.
Comp. Mach. 6, 164-171.

Maurer, M.S., 2007. Structural Awareness in Complex Product Design, PhD thesis, Technischen
Universitit Miinchen, Munich, Germany

Savio, E., 2012. A methodology for the quantification of value-adding by manufacturing metrology,
CIRP Annals 61 (1), 503-506.

Steward, D.V., 1965. Partitioning and tearing systems of equations, SIAM Numerical Anal., ser. B,
vol. 2, no. 2, 345-365.

Steward, D.V., 1981. The design structure system: A method for managing the design of complex
systems, IEEE Trans. Engineering Management, EM-28 no 3, 71-74.

Contact: P. Eklund, Umeé University, Department of Computing Science, 901 87 Umea, Sweden,
Phone +46 70 586 4414,

e-mail peklund@cs.umu,.se,

URL https://www.umu.se/en/research/groups/logic-and-applications/

150 DSM 2019

