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Abstract: Multi-disciplinary design of complex systems is characterized by many 

inter-dependencies between components. Therefore, adjusting their properties 

appropriately to satisfy all system requirements is difficult. Simulation models enable 

fast quantitative assessment of the system behavior. Unfortunately, monolithic 

system models are often not available, due to domain-specific knowledge that needs 

to be incorporated. This paper proposes a framework that enables a modular 

formulation of separate models that can be integrated easily into a full system model. 

Key ingredient is a model for dependencies between system and component attributes 

as polyhierarchies without feedback loops. The complex dependency structure of a 

system can be modularized and simplified. Modular models are integrated into a 

system model by sequencing the flow of information of the design task. The resulting 

system model has no circular dependencies and two distinct interfaces: independent 

design variables and dependent system performance measures. The approach is 

applied to two gear design tasks. 
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1 Introduction 

Complexity is one of the main drivers for development and productions costs. 

Interdisciplinary design teams, conflict of goals and many dependencies characterize 

complex products. Due to the complexity, dependencies and the interaction of components 

become unclear. Volatile requirements worsen the situation. Especially in early design 

phases, this lack of knowledge leads to difficult decisions. At same time, these early 

decisions set the agenda for the success of a product. 

Hehenberger et al. (2016) identify the process from requirements specification to solution 

concepts as crucial for complex products, such as cyber physical systems. They point out 

the difficulty to evaluate different solution concepts in early phases and to find optimal 

solutions. To describe the system behavior of complex products, models from different 

disciplines need to be combined.  

Thus, our vision is: generating better solutions and supporting transparent decisions by 

combining modular models automatically to complex system models. By re-using well-

known, frequently used modular models we can also mitigate the modeling effort. 
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2 Related Research 

2.1 Product Development and Model-based Systems Engineering 

The V-Model (Gausemeier and Moehringer, 2002) is an often used procedure model for 

complex product development. It basically breaks down system requirements to sub-

systems and component requirements. To support the V-Model, Model-based Systems 

Engineering (MBSE) can be applied. INCOSE (2007) defines MBSE as “the formalized 
application of modelling to support system requirements, design, analysis, verification and 

validation of activities beginning in the conceptual design phase and continuing throughout 

development and later life cycle phases”. SysML is a graphical modeling language, which 

visualizes and communicates the essential aspects of a system’s design: structure, behavior, 
requirements, and parametrics” (Delligatti, 2014). Hehenberger et al. (2016) present an 

holistic approach to design cyber physical systems based on SysML, functional 

dependencies and physical models. According to Friedenthal et al. (2014), SysML 

facilitates the reuse of models and systems. Reusability is one of the most important criteria 

in a modular model-based system. Zimmermann et al. (2017) proposed a quantitative 

approach to support the V-model: Solution Space Engineering (SSE). SSE uses Monte 

Carlo sampling for all design variables and combines them to arbitrarily generated designs. 

They constitute the design space. Good designs meet all requirements. All good designs 

constitute the solution space. A boxed shaped solutions space can be used to decouple the 

design variables (Zimmermann and Hoessle, 2013). Before the solution spaces can be 

calculated, the user must set up a certain dependency structure, called attribute dependency 

graphs (ADGs), and models to describe the system behavior quantitatively. In application 

this causes high efforts (Rötzer et al., 2020). Furthermore, fast models are needed to 

calculate system responses of thousands of sample points in an adequate time. We want to 

contribute to this drawback by enabling SSE, analogous to MBSE approaches, with fast 

modular models, which can assembled to complex systems. 

2.2 Separating and Combining Models 

Combining differential equations and formal logic to characterize physical systems instead 

of the qualitative standard approach (which is to use discrete value spaces and confluences) 

is a first attempt in research at merging complex systems (Sandewall, 1989). The 

parametric diagram of SysML for MBSE proposes a graphical solution for combining 

physical models. Constraint blocks represent equations (models) and links between blocks 

transfer the data from a model to another. This is an effective method, but the engineer 

must have a good knowledge of the connections between models. This can be a difficult 

and time-consuming exercise, which is not valuable in early stage of the product 

development (Delligatti, 2014). In the design of automation systems redundancy models 

are built to manage uncertainty and to compensate possible failures of sensors. They are 

embedded in SysML to connect (physical) models without circular dependencies (Schütz 

et al., 2012). In assembly-based modular design methods, products can be represented by 

a liaison graph, which is a representation of the product with links between modular models 

to describe the product (Tseng et al., 2004). It is a manual task, which can be time 

consuming for large systems. There are two types of solutions to automate this task. First, 

the graph searching technique: in liaison graph, merging of models is done automatically 
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by connecting the liaison together with an ‘cut-set’ algorithm (Su, 2009). This technique is 

not scalable to large systems. The second solution is an artificial intelligence method, 

which searches for assembly plans. There are different AI methods like Genetic algorithms 

(Hui et al., 2006) or artificial neural network (Chen et al., 2008). These algorithms have 

difficulties to find the global solution for large and complex products. Lambe and Martins 

(2012) introduce the so-called Extended Design Structure Matrix (XDSM) to visualize data 

dependency and process flows of optimization algorithms. They do not investigate system 

evaluations in detail and do not use DSM methods to rearrange the elements. 

In model-driven engineering, commercial graphical tools can merge rudimentary models 

to system models. They support replacing and reusing models within a system. Available 

tools on the market are: Simulink (Simscape); Modelica (Dymola); Simcenter (Amesim) 

and Rational Software Architect specialized for designing architecture for application and 

web services (Leroux et al., 2006). The first three tools have roughly the same libraries 

with standard physical models. It is also possible to import own models (Mattsson et al., 

1998; Pietruszka, 2014). The user-friendly graphical design of these tools makes it easy to 

use (Schmidt et al., 2009). Nevertheless, the user needs a good knowledge to build 

manually the system and use effectively one of these tools. Reusability and modification 

of global systems needs adaptation, which can lead to conflicts which must be detected and 

resolved by the user (Debreceni et al., 2016; Leroux et al., 2006; Mattsson et al., 1998; 

Pietruszka, 2014; Swithinbank et al., 2005). Our approach has three main differences 

compared to the tools on the market: First, our models are not time dependent. Second, our 

models are standalone, validated models. Third, the merging of models into a system is 

done automatically, the user does not necessarily need in-depth knowledge. 

2.3 Sequencing of Design Structure Matrices 

Our approach uses sequencing of Design Structure Matrices (DSMs), which is used in 

process design. The process of a product development can be divided in activities, where 

outputs of each activity are inputs for other activities (Eppinger and Browning, 2012). Our 

approach does not have this temporal aspect, but we have a similar concept of sequential 

dependencies between the in- and output attributes of the models. In process architecture, 

sequencing is carried out in three steps: First, decompose the global process in activities. 

Then, identify the interactions between activities and report them to the DSM. Finally, 

reordering the rows and columns of the DSM. The last step, also called partitioning, block 

diagonalization or block triangularization and is done with an algorithm (Browning, 2001, 

Gebala and Eppinger, 1991). These algorithms are the basis for our algorithm. 

3 Introductory Example: Simple Transmission Design 

3.1 Design Task 

We need to design the drive of a screw conveyor for wood chips. The conveyor requires a 

torque 𝑇𝑜𝑢𝑡   20 𝑁𝑚 and a rotational speed of 𝑛𝑜𝑢𝑡  20 1/   ≈ 2𝑟𝑎 /𝑠. As an input 

we have chosen an universal electric motor with a specified torque 𝑇𝑖𝑛 =  𝑁𝑚 and 

rotational speed 𝑛𝑖𝑛 = 30001/𝑚𝑖𝑛 ≈ 31  𝑟𝑎 /𝑠. During early design phase we now 

want to compare different concepts and evaluate their suitability. The following questions 

arise: (1) How many gear stages do we need? (2) What kind of gear pairs can we use? (3) 

How do the gear pairs look like, i.e. how many teeth do they have? 
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3.2 Prerequisites 

The presented method requires basically two inputs: (1) a so-called attribute dependency 

graph (ADG) and (2) a quantitative model, which can be expressed in a form: y=f(x) where 

f(x) can be any kind of function, which provides a quantitative relation between an input x 

and an output y, such as a formula, a numerical simulation or a neural network. (1) ADGs 

model the information flow during the design process of a technical product to avoid 

circular dependencies. It distinguishes design variables (DV) and quantities of interest 

(QoI). A designer can only influence the values of the DVs directly. The DVs then set the 

values of the QoIs. For example, in Figure 1 (right) the designer can set values for the teeth 

of the worm gear (z_21, z_22), than i_2 is determined. (2) M0004_f_Worm_gear.m 

calculates the dependency. Furthermore, the algorithm requires a unique labeling of the 

attributes of the ADGs. It must be consistent throughout all modular models used. Here i, 

i_1 and i_2 are named consistently through all models. Figure 1 depicts all ADGs (graphs) 

and models (colored boxes) used in this design task. 

 

Figure 1: Overview over modular models for a simple transmission design task 

3.3 Building the system model 

The algorithm merges and sequences modular models to a system model. Due to the 

structure of the ADGs, we always get a DSM without any feedback. Figure 2 presents the 

result of the automatic merging and sequencing of the four modular models from Figure 1 

into the final system. We use the IC/FBD convention. The sequenced DSM of the 

assembled system (upper left) defines the order of function evaluations (roman 

numbering). For better understanding we added the ADG and the corresponding functions 

of the modular models on the upper right. As a result, the algorithm generates a Matlab file 

to calculate the overall system behavior by defining the in- and output variables of the 

system and evaluating the modular models in the right order. We can see that attributes 

change their status within the process: the former DV transmission ratio i becomes an 

intermediate attribute, as well as the former QoI i_1 or i_2. The system model 

S0001_f_SimpleTransmission.m can be reused in Matlab to evaluate the concepts. 

3.4 Results 

We can use solution space algorithm together with the system model to answer the 

questions of the design task. Therefore, we developed three concepts by varying the 

modular models: Concept 1: Spur + worm gear; Concept 2: Spur + spur gear (variation of 

gear type: M0004→ M0003); Concept 3: Worm gear (variation of number of gear stages: 

M0002 → M0005 (not shown here)). Figure 3 displays the resulting solution spaces. Only 
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concept 1 leads to solutions that fulfill all requirements (shown as green dots). The other 

concepts cannot provide the required output torque. 

 

Figure 2: Overview of the final simple transmission system; upper left: sequenced DSM; upper 

right: ADG with functions; bottom: automatically generated system model as a Matlab function 

 

Figure 3: Solution Spaces for three concepts of a simple transmission design problem 

Thus, the solution of design task is a two stage gear, consisting of a spur and a worm gear 

stage with the values shown in Table 1. The intervals provide freedom during the design 

process. By interchanging the modular models, we were able to generate and evaluate new 

system models quickly. This improves decision making in early design phases. 

Table 1: Possible Solution for a simple transmission design problem 𝑧 11 𝑧 12 𝑧 21 𝑧 22 𝑛 𝑖𝑛 𝑇 𝑖𝑛 𝑛 𝑜𝑢  𝑇 𝑜𝑢   2 ; 2    125; 135    ;     10 ; 115  31  𝑟𝑎 /𝑠  𝑁𝑚  2 𝑟𝑎 /𝑠   20𝑁𝑚 
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4 Method 

4.1 Merging algorithm strategy 

The ADG must be saved as a csv file and the function must be saved as Matlab file. The 

algorithm merges the modular models iteratively to the system model (see Figure 4).  

 

Figure 4: Representation of the merging models step 

4.2 Representation of the algorithm merging modular models into a system 

The merging algorithm called MergingIntoSystem creates the system from the modular 

models. Figure 5 shows the different steps of the merging algorithm. The Merging2Models 

function is composed of two functions presented in section 4.3. The ReorderLines 

algorithm reorders the model functions. In fact, during the merging of DSM the functions 

order can be incorrect (see Figure 4). The final step is the naming of the global system. 

Figure 2 shows the result of the algorithm in an application. 

 

Figure 5: Scheme of the merging algorithm  
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4.3 Merging of two DSM 

The Merging2DSM algorithm merges 2 DSM in a new DSM is presented in the first green 

rectangle of Figure 5. After merging, the SequencingDSM algorithm sequences the new 

DSM. The three steps of this algorithm are: determine the matrix dimension: N. If there is 

at least one entry (“1”) in the last row, exchange it by a row with no entries. Finally take 

the matrix of dimension N-1 as the new matrix dimension and repeat until matrix 

dimension is equal to 1. In Figure 5 the second green rectangle shows the sequencing step, 

where the variable C is moved from position 3 to position 5. 

5 Transmission and Bearing Design 

5.1 Design Task Description 

As case study, a non-series gearbox for an agricultural machine is taken. In an early design 

phase, the describing quantities are input and output torque, rotational speed and desired 

lifetime. Due to a wide spread of design possibilities, the aim of the approach is to compare 

different concepts by switching sub-models to generate distinct systems. 

5.2 Modeling 

The two main modular models are: gear pairs and lifetime of the bearings. The gear model 

is considered a one stage spur gear pair. Inputs of this model are the geometric parameters 

of each gear, input torque and rotational speed. Outputs are the arising gear forces, torque 

and rotational speed. The bearing model consists of a shaft with external forces and two 

bearings. Inputs of the model are the forces and their position on the shaft as well as the 

bearing parameters and the rotational speed. Outputs are the bearing lifetimes. Functional 

dependencies were modeled as described in (Niemann et al., 2001) and (Niemann and 

Winter, 2003). Figure 6 shows the ADGs of these two models. Three representative 

concepts were chosen for comparison. Concept 1.1 and 1.2 are gearboxes with two stages 

with different bearings while concept 2.1 is a three-stage gearbox. To receive desired in- 

and output-quantities, further models were added on top and bottom of the assembled 

systems. 

 

Figure 6: Automatically generated ADGs for gear-pair (left) and bearing (right) models 

5.3 Results 

Figure 7 shows the result of the merging-algorithm. Despite the connections of the models 

being easily understandable, the merged system can be quite complex. But as the modular 

models are generally applicable and validated, so is the merged system model. 
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Figure 7: Automatically generated ADG of concept 2.1 with function evaluation flow 

Figure 8 shows a box shaped solution spaces for the design of a two- and three-stage 

gearbox. In both scenarios the gearbox was considered to reach a torque of 1500 Nm and 

a rotational speed of 460 min-1. Both systems provide possible solutions. At the first look 

concept 2.1 appears to have a bigger solution-space, especially for the first gear pairing. 

But this bigger solution space must be paid with a significant reduced solution space for 

the gear stages two and three. Moreover, concept 1.1 achieves a much higher lifetime by 

considering a similar dynamic load rating (see forth column). In a further step concept 1.1 

can be modified to concept 1.2 with bearing in X-arrangement (not shown here). Thereby 

it is possible to find common solution spaces for both bearing types. Thus, both bearing 

types can be used during design to increase flexibility. Thanks to the model having a 

discrete formula relation the calculation time is below one second for 104 sample points. 

 

Figure 8: Two- and three-stage gearbox design with solution-space 

6 Summary and Discussion 

The presented approach allows the automatic assembly of modular models to complex 

system models. Therefore, a certain input structure is required: attribute dependency graphs 

and quantitative models to describe the dependencies quantitatively. Two gear design 

examples illustrate the benefits of the modular approach in early design phases. Different 

concepts can be evaluated quickly. This approach enables the application of SSE. The re-
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use of well-known models reduces modelling and validating effort. Hence all part models 

of the desired system are formulated in compatible Matlab code, the generation of the 

system model is easily possible without further knowledge of the system. Due to its 

universal structure, the approach is applicable to various fields. Nevertheless, the approach, 

so far, requires a unique attribute labeling. Otherwise the approach is not able to identify 

the interfaces between the modular models. Furthermore, the user must set up the models 

strictly according to the template.  

7 Outlook 

To overcome the drawbacks, which come along with this approach, we suggest designing 

a database to store the models systematically. The user can add models by a standardized 

interface without changing the underlying structure of the models. A database alleviates 

the handling of attributes. We can define classes of attributes and limit the labeling of 

attributes, such that an algorithm can identify similar attributes in different modular 

models. We want to enable multi-disciplinary design by creating an environment, where 

experts from different disciplines can share and connect their knowledge via models and 

standardized interfaces. Furthermore, sequencing provides another information, which is 

not used yet: We can identify models that can be evaluated in parallel to further decrease 

calculation time. This aspect is also subject to further investigation. 
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