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Abstract: This paper examines the interrelatedness of risks in the context of risk 

analysis with the goal of providing valuable outcomes for regulators, specifically the 

example of ReliabilityFirst as a regulator of the bulk power system (BPS). A focus 

on the novel concept of the “time lag” associated with network risks demonstrates 
the importance of accurate risk ranking. Using a design structure matrix (DSM) to 

model relationships, the possibility of causal relationships between risks to the BPS 

was assessed by industry experts. The assessment asked the experts to identify the 

probability and impact of each risk in isolation, as well as a smaller subset of the 

experts weighting the interrelatedness of the identified risks. The outcomes show that 

applying a networked approach to risk analysis provides a more comprehensive 

understanding of risk relationships, which results in greater opportunities for 

addressing risks in the most effective order. 
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1 Introduction 

The traditional concept of regulation involves a government authority ensuring that 

regulated organizations are in technical compliance with a system of rules and laws 

(Nicholls 2015). The more modern approach of risk-based regulation involves the regulator 

working collaboratively with the regulated organizations for the proactive prevention of 

harms. This requires the regulator to have a nimble, mission-driven approach to determine 

the issues it will focus on and utilize the appropriate mechanisms to influence behavior that 

will mitigate the potential harm posed by those issues. Sparrow (2011) described this 

process as the “craft of regulation.” 

ReliabilityFirst Corporation (RF) is one of six Regional Entities approved by the Federal 

Energy Regulatory Commission (FERC) to ensure the reliability, security, and resiliency 

of the North American bulk power system (BPS) pursuant to the Energy Policy Act of 

2005. RF performs this mission pursuant to its delegation agreement with the North 

American Electric Reliability Corporation (NERC), which is the FERC-approved electric 

reliability organization. Considering the complex and interconnected nature of the BPS, 

the NERC, RF, and the other Regional Entities (collectively, the “ERO Enterprise”) have 
adopted a risk-based approach to regulating the users, owners, and operators of the BPS.  

Normally, RF has crafted its regulation through a classical, top-down approach to risk 

identification and assessment focused on the primary factors of probability and impact. 
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These assessments consider the various risks in isolation, without accounting for their 

interrelatedness. Drawing upon risk network analysis research in the field of project 

management (e.g., Fang and Marle 2012), RF sought to take this next evolutionary step in 

its approach to risk assessments.   

Project risk management (PRM) has matured to the point of acknowledging the high level 

of complexity inherent in projects today. The existence of numerous and diverse elements 

which are strongly interrelated is one of the main features of this complexity. Academic 

research has highlighted the network of interdependent risks accompanying projects and 

even sought to examine the propagation behavior of these risks resulting in a “domino 
effect” or a “loop.” 

In this paper, RF seeks to build upon the extensive work on risk network analysis from the 

project management field by applying those same concepts to the risks facing the BPS. 

One innovative outcome of this endeavor is the concept of the “time lag” associated with 
a risk in a network. In the BPS context, a risk may manifest itself in Year One, and its 

effects may linger on the grid for years, amplifying the likelihood of other risks. To account 

for this time lag, RF developed an algorithm based upon the Interpretive Structural 

Modeling (ISM) approach described by Gorvett and Liu (2007).   

The purpose of developing a networked approach to risk analysis is to provide the ERO 

Enterprise and any other risk-based regulator with a decision support system framework 

based on a more complete picture of the risks they are attempting to manage, while 

understanding that the essence of the craft of regulation is action with neither entire 

ignorance nor complete and perfect information, but partial knowledge.   

2 Epistemological Approach to Risk Assessment 

One of the challenges present in the craft of regulation is that human perception and 

cognition are inherently limited (Renn 2014). Consequently, it is often impossible to 

generate perfect knowledge about our world or create a “true” understanding of our 
physical and social environments. This type of epistemological problem creeps into the 

realm of risk analysis in different ways. It can be demonstrated in questions like “How do 
we know the real risks we face?” or “How can we rank these risks objectively?” This 

epistemological quagmire requires risk-based regulators to sift through these competing 

epistemologies to develop a risk assessment methodology that is both sound and fair. RF 

acknowledges that all of its risk assessments are influenced by the assessors’ own 

background and experience. In this and all assessments, RF takes steps to reduce the 

potential of bias on the part of the assessors. 

3 Expert Elicitation 

Expertise in the ERO Enterprise can generally be separated into two main domains: power 

systems engineering and cybersecurity. For this exercise, subject matter experts (SMEs) 

were chosen from both domains based upon their educational backgrounds and 

professional experience. To control for overconfidence bias, all SMEs had undergone 

calibration training as described by Hubbard (2009). All of the SMEs participated in the 

classical risk assessment analysis by independently completing a survey that asked them 
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to identify the probability and impact of each identified risk in isolation. A smaller subset 

of four SMEs, two power systems engineering SMEs and two cybersecurity SMEs, were 

selected to participate in the expert elicitation for the network analysis. 

Following the guidance provided by the U.S. Nuclear Regulatory Commission in its 2016 

white paper on expert elicitation (Xing and Morrow 2016), this subgroup of SMEs was 

tasked with identifying and weighting the interrelatedness of the identified risks using a 

design structure matrix (DSM)-based method. The subgroup SMEs were selected based on 

their experience utilizing DSMs and the fact that they worked in a RF department not 

focused strictly on compliance. Rather, these individuals’ primary work involved a high 

degree of cross-functional work that exposed them to many different perspectives on the 

risks facing the BPS. 

The elicitation session to build the risk structure matrix (RSM) lasted approximately two 

hours. The SMEs were asked the following question for each pair of risks in the network: 

“If Risk A occurs in Year One, how likely is it that this occurrence could cause Risk B to 

occur in the following year?” The various weights placed on the connections among risks 

(i.e., 0, 1, 3, 9) accounted for the time-lag aspect of the risks. The following example helps 

illustrate this relationship. An owner of assets on the BPS implements a system 

reinforcement in Year One to enhance overall performance and reliability. During the final 

testing of the control systems associated with this system reinforcement, certain tests were 

either performed erroneously or not at all. As a result, a latent error resides within the 

function of this particular control system on the BPS, which could cause an inadvertent 

interruption of service later. Therefore, if a latent error is developed in Year One, it may 

be more likely that an inadvertent interruption of service could occur in Year Two when 

the control system reacts to an event like a lightning strike. Based on the aforementioned 

weights, the time-lag aspect of the risks in this example are as follows: a value of 9 would 

indicate an interruption of service has a strong likelihood to occur in Year 2; a value of 3 

has a moderate chance to occur, a value of 1 has a slight chance to occur, and a value of 0 

has no chance to occur.  

4 Risk Identification and Initial Assessment 

RF began with a list of conventional risks with negative effects, followed by a classical 

assessment of these risks in terms of probability and impact. As suggested by Hubbard 

(2009), this exercise employed the subjectivist perspective on probability. First, the experts 

on the RF team were asked to identify the potential level of harm (impact) for each risk 

category. In accordance with the NERC’s Event Analysis Process (NERC 2019), the scales 

in Tables 1 and 2 were used for responses. Experts assessed the probability of a risk 

occurring in a given year and the impact in terms of the number of megawatts that would 

be lost. The classical steps of risk identification and assessment study individual risks in 

isolation. These results, given in Table 3, serve as an input to our further study of risk 

interactions. 
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                 Table 1. Impact Table                                              Table 2. Likelihood Table 

Statement Impact 

Extreme Unintended loss of load and/or 

generation > 10,000 MWs 

Substantial Unintended loss of load and/or 

generation from 5,000 – 10,000 MWs 

Intermediate Unintended loss of load and/or 

generation from 1,000 – 4,999 MWs 

Minor Unintended loss of load and/or 

generation from 300 – 999 MWs 

None Unintended loss of load and/or 

generation < 300 MWs 

 

 

Table 3. Grid Risks with Probability and Impact in Isolation 

 

5 Risk Network Model 

5.1 Identification of Risk Network 

The DSM method (Eppinger and Browning 2012) has proven to be a practical tool for 

representing and analyzing relations and dependencies among system components. The 

DSM is used here to model the relationships among grid risks, since one risk may influence 

another. Risk interaction is considered as the existence of a possible causal relationship 

between two grid risks. The risk structure matrix (RSM) is defined as a DSM with RSMij 

= {0, 1, 3, 9} representing a {no, slight, moderate, strong} link from Rj to Ri (i.e., inputs-

in-rows [IR] DSM convention). Figure 1 gives an example where an empty cell indicates 

a 0 and darker shading indicates stronger links. 

As mentioned, the experts also encoded a time dependency into the RSM (i.e., 0, 1, 3, and 

9) which have the following assigned likelihoods, respectively: 0, 0.11, 0.33, and 1.0. To 

account for time-lag effects, any direct link (greater than zero) was assumed to cause a 50% 

increase in the probability of all second-order, indirectly affected risks in the following 

Abbreviation

Likelihood in 

Isolation

Impact in MW in 

Isolation

Expected Loss 

(Likelihood X 

MW)

MIS 0.19 6824 1327

CYP 0.11 8235 905

ENV 0.10 8000 768

HPF 0.10 6737 643

GEN 0.06 5800 359

SAW 0.04 6778 260

EVR 0.04 6800 246

UNK 0.03 7200 230

MPL 0.02 6000 132

Human Performance

Changing Generation Mix

Situational Awareness and IROLS

Event Response

Unknown Unknowns

Planning and Modeling

Risk Category

Protection System Misoperations

Information/Asset Security

Environmental Factors

Statement Likelihood 

Extremely Likely 1 

Very Likely 0.33 

Likely 0.125 

More Moderate 0.05 

Moderate 0.0125 

Less Moderate 0.0025 

Unlikely 0.001 

Very Unlikely 0.00001 

Extremely Unlikely 0.000001 

Not Likely 0.0000001 
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year.1 (This amplified probability is then negligible after the following year.) For example, 

in Figure 1, an environmental risk (ENV) occurring now could directly cause a generation 

risk (GEN) this year and could furthermore cause (50% likelihood) a misoperation risk 

(MIS) next year. These indirect effects are layered on top of the direct effects to account 

for the increased risk due to the indirect relationships and time lags.  

Figure 1. Illustration of the risk structure matrix (RSM) and equivalent directed graph 

         

Figure 2. Description of the transformation from isolated to networked risks using the RSM 

 

5.2 Assessing the Risk Network 

The risks initially evaluated as listed in Table 3 were then subjected to a five-step process 

(outlined in Figure 2) to account for their interactions. 

1. Calculate networked probabilities from direct links: For each risk, calculate its larger, 

networked probability using the RSM for all direct connections. For example, an 

environmental risk (ENV) has a 10% likelihood of occurring. A generation risk (GEN) 

has a 6% likelihood. Since an ENV risk is connected to a GEN risk by a weight of 3, the 

 
1 This 50% factor was the result of discussion with the experts, who found the number to be reasonable and 

realistic.  Furthermore, based on the sensitivity analyses, described in Section 6 below, reasonable changes to this 

factor did not make a significant difference in the results. 
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likelihood of the GEN risk increases from 6% to 6% + (1/3 of 10%) or 9.33% from just 

the ENV risk. 

2. Calculate networked probabilities from indirect links: Like in Step 1, calculate the larger, 

networked probability using the RSM for all indirect connections. The contributions 

from direct connections and indirect connections (one year prior) are added to estimate 

the final networked probability. For example, an ENV risk has a 10% likelihood of 

occurring. A GEN risk has a 6% likelihood. The GEN risk is connected to an ENV risk 

by a weight of 3. The GEN risk then connected to the protection system mis-operations 

(MIS) risk, which has a 19% likelihood. This creates an indirect connection between 

ENV and MIS. The original likelihood of MIS will increase due to this indirect 

connection from 19% to 19% + 6% (direct from GEN) + 50% of 10% indirect from 

ENV) or 30% total for the MIS risk. 

3. Calculate expected losses: The amplified probability and impact are used to revise the 

expected losses, but only for the direct connections. (The impact from a prior year is not 

counted in a current year.) For example, an ENV risk has an impact of 8,000 MW. A 

GEN risk has a 5,800 MW impact. Since an ENV risk is connected to a GEN risk by a 

weight of 3, the potential impact of the GEN risk increases from 5,800 MW to 5,800 

MW + (1/3 of 8,000 MW) or 8,476 MW from just the ENV risk. 

4. Calculate the networked impact: The networked impact in the current year from all direct 

effects is calculated by dividing by the networked probabilities from step 2.2 

5. Calculate the networked harm: The networked harm is finally determined by adding the 

harm in isolation to the additional harm created by direct connections (although at lower 

probabilities of occurrence).2 

The equations governing these steps are described as follows: 𝜌𝑖 =  𝐿𝑖𝑘𝑒 𝑖ℎ𝑜𝑜  𝑜𝑓  ℎ𝑒 𝑅𝑖𝑠𝑘 𝑂𝑐𝑐𝑢𝑟𝑖𝑛𝑔 𝑖𝑛  𝑠𝑜 𝑎 𝑖𝑜𝑛 (0  𝑜 1) 𝜃𝑖 =   𝑚𝑝𝑎𝑐  𝑖𝑓  ℎ𝑒 𝑅𝑖𝑠𝑘 𝑂𝑐𝑐𝑢𝑟𝑒  (0  𝑜 10,000  𝑒𝑔𝑎 𝑎  𝑠 𝐿𝑜𝑎  𝐿𝑜𝑠𝑠) 𝜌𝑛 =  𝐿𝑖𝑘𝑒 𝑖ℎ𝑜𝑜  𝑜𝑓  ℎ𝑒 𝑅𝑖𝑠𝑘 𝑂𝑐𝑐𝑢𝑟𝑖𝑛𝑔  𝑖 ℎ  𝑛 𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐 𝑒 𝑛𝑒𝑠𝑠 (0  𝑜 1) 𝜃𝑛 =   𝑚𝑝𝑎𝑐  𝑖𝑓  ℎ𝑒 𝑅𝑖𝑠𝑘 𝑂𝑐𝑐𝑢𝑟𝑒  (0  𝑜 10,000  𝑒𝑔𝑎 𝑎  𝑠 𝐿𝑜𝑎  𝐿𝑜𝑠𝑠) 
 

𝜌𝑛 = 𝜌𝑖   [∑ 𝛼𝑑𝑖𝑟𝑒 𝑡9 × 𝜌𝑖 𝑑𝑖  𝑐𝑡  𝑙𝑙 𝑑𝑖  𝑐𝑡 𝑐𝑜𝑛𝑛 𝑐𝑡𝑖𝑜𝑛𝑠 ]          × [∑ 𝛼𝑖𝑑𝑖𝑟𝑒 𝑡9 × 𝜌𝑖 𝑖𝑛𝑑𝑖  𝑐𝑡  𝑙𝑙 𝑖𝑛𝑑𝑖  𝑐𝑡 𝑐𝑜𝑛𝑛 𝑐𝑡𝑖𝑜𝑛𝑠  ]  
 

Where αdirect or indirect is the weight listed in the RSM: 0, 1, 3 or 9. Note that n ≥ i. In other 

words, the risk always increases and never decreases as a result of the network effects. The 

networked risk is then given by: 
 𝜌𝑛 × 𝜃𝑛 = 𝜌𝑖 × 𝜃𝑖   [∑ 𝛼𝑑𝑖𝑟𝑒 𝑡9 × 𝜌𝑖 𝑑𝑖  𝑐𝑡 × 𝜃𝑑𝑖  𝑐𝑡  𝑙𝑙 𝑑𝑖  𝑐𝑡 𝑐𝑜𝑛𝑛 𝑐𝑡𝑖𝑜𝑛𝑠 ]          × [∑ 𝛼𝑖𝑑𝑖𝑟𝑒 𝑡9 × 𝜌𝑖 𝑖𝑛𝑑𝑖  𝑐𝑡 ×  𝑙𝑙 𝑖𝑛𝑑𝑖  𝑐𝑡 𝑐𝑜𝑛𝑛 𝑐𝑡𝑖𝑜𝑛𝑠𝜃𝑖𝑛𝑑𝑖  𝑐𝑡 ]  
 

The initial and final likelihoods and impacts are plotted in Figure 3, with the tip of each 

arrow representing the networked values. In all cases, the risk links served to substantially 

increase the expected losses (Table 1). Each risk in isolation (indicated by the beginning 

of the arrow) increased to a new level after accounting for network influences (indicated 

 
2 Considering the fact that the entire network is used in this calculation, examples would be too lengthy here.  

Please see the software equations in the Appendix. 



O’Connor, Patrick; Gest, Johnny; Dister, Carl; Browning, Tyson 

DSM 2020 131 

by the tip of the arrow). The EVR risk increased significantly, for example, while ENV 

risk did not change as dramatically. 

Figure 3. Shifts in Risk Ranking 

 

Figure 4. Comparison of Final Rankings 

6 Sensitivity Analyses 

Utilizing the RSM not only allows the consideration of complex relationships between risk 

categories when determining the overall risk rank but also provides additional insight in 

the development of a risk mitigation plan by factoring in how sensitive any risk’s ranking 
is to changes in model parameters. As the effectiveness of risk mitigation activities are 

monitored over time, further perspective can be gained by validating and/or updating the 

initial uncertainty within the original RSM. Initially, a sensitivity analysis also can be 

performed to determine which risk links should be monitored most closely. The sensitivity 

of the link weights (i.e., 1, 3, and 9) were studied first to determine their impact on the risk 

ranking. In addition to the original networked analysis, three additional scenarios were 

considered: 1) changing slight links to strong ones (RSMij = 1 changed to 9); 2) changing 

a moderate link to a strong one (RSMij = 3 changed to 9); and 3) adjusting both slight and 

moderate links to strong ones (RSMij = 1 and 3 changed to 9). Table 4 displays variances 

in likelihood, impact, risk, and rank for each of these scenarios. 

 



Part III: Project Management 

132   DSM 2020 

Table 4. Risk Linkage Strength – Sensitivity Review 

 

This analysis resulted in values associated with likelihood, impact, and risk changing 

significantly for multiple risks. Figure 5 shows the variations, with UNK and SAW being 

the most sensitive risk categories (with the greatest amounts of variation). 

Figure 5. Risk Variation in Link Strength Sensitivity Review 

 

However, Table 4 indicates that the overall risk rankings did not change significantly with 

changes in link strength. In fact, EVR, CYP, SAW, and UNK consistently remained the 

top four risk categories. The remaining risk categories also stayed relatively consistent with 

no movement in rank or only moving one position. Second, we analyzed the sensitivity of 

the results to changes in the probabilities (likelihoods). In short, the model was rerun with 

each risk’s likelihood cut in half. This analysis indicated that a reduction in the likelihood 

of CYP has the largest effect on the top four risk categories. As a result, risk mitigation 

activities should initially focus on CYP initiatives. 

7 Conclusion 

This paper presented a networked approach for assessing the risks to the BES in the RF 

footprint. This approach supplements the current approach, which only focuses on 

assessing risks in isolation. Notably, the approach detailed in this paper also adds the time-

lag aspect of these risks, which refers to the fact that a risk occurring in Year One may 

linger on the grid, amplifying the likelihood of other risks occurring in Year Two. These 
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results indicate that utilizing this networked approach has an impact on the order in which 

the risks are ranked (Figure 4). These results also provide a different perspective on RF’s 
focus of risk mitigation activities. While there are certainly limitations to this approach, it 

nevertheless provides RF and the ERO with a more complete picture of the risks facing the 

grid today. Future collaboration with regulators of other critical infrastructures based on 

this approach can expand the network of risks by linking risks between infrastructures. 

References 

Eppinger, S.D. and T.R. Browning (2012) Design Structure Matrix Methods and Applications, 

Cambridge, MA: MIT Press. 

Fang, C. and F. Marle (2012) "A Simulation-based Risk Network Model for Decision Support in 

Project Risk Management," Decision Support Systems, 52(3): 635-644. 

Gorvett, R. and Liu, N. (2007), “Measuring Operational Risk Interdependencies using Interpretive 
Structural Modeling,” 2007 Enterprise Risk Management Symposium, Chicago, IL. 

Hubbard, D. (2009) The Failure of Risk Management, Hoboken, NJ: Wiley. 

NERC (2019), “Electric Reliability Organization Event Anlaysis Process Version 4.0,” available at: 
https://www.nerc.com/pa/rrm/ea/ERO_EAP_Documents%20DL/ERO_EAP_v4.0_final.pdf 

Nicholls, A. (2015) “The Challenges and Benefits of Risk-Based Regulation in Achieving Scheme 

Outcomes,” Presented to the Actuaries Institute, Injury Schemes Seminar, 8-10 November. 

Renn, O. (2014). The Risk Society Revisited, Temple University Press. 

Sparrow, M. (2011) The Regulatory Craft.  Washington, DC: Brookings Institute Press. 

Xing, J. and S. Morrow (201 ), “White Paper: Practical Insights and Lessons Learned on 
Implementing Expert Elicitation,” available at:   https://www.nrc.gov/docs/ML16287A734.pdf  

Contact: Patrick O’Connor, ReliabilityFirst Corporation, 3 Summit Park Drive, Suite 600, 

Cleveland, OH, United States, 216-503-0668, patrick.oconnor@rfirst.org  

Appendix: Software  
The spreadsheet Risk_Analysis_Software.xls contains the equations to calculate the Likelihood of Occurrences and Impacts.  There are sensitivity 

analysis tuning parameters included—e.g., the “one half” concept from the experts is tunable.  Also, the weighting of 1, 3, or 9 is adjustable to check 

for sensitivity between uncertainties in the experts’ expression of the connection weight and its impact on the final ranking. 

R Software 

The following R commands were run to create the network diagrams and the list of direct and indirect connections for use in the spreadsheet.  The 

package “sna” was used to create the graphics (Note: It could have been assumed that every cell in the DSM was full and loops run to calculate every 

combination; however, the sparse matrix was leveraged, along with the small number of risks, to allow a more semi-automatic coding, using 

spreadsheets that non-programmers could understand and verify/validate. 

library(sna) 

 

A9=matrix(c(0,0,0,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,0,0,0,1,

0,1,0,0,1,1,1,0,0),nrow=9,ncol=9,byrow=FALSE) 

A3=matrix(c(0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,0,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,1,0,0,

0,0,0,1,0,0,0,1,0),nrow=9,ncol=9,byrow=FALSE) 

A1=matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,

0,0,0,0,0,0,0,0,0),nrow=9,ncol=9,byrow=FALSE) 

AT=matrix(c(0,3,0,9,9,9,0,3,0,0,0,0,9,1,1,9,9,3,3,1,0,3,3,0,1,9,3,0,9,0,0,3,0,3,3,9,0,0,0,3,0,0,3,1,0,0,1,0,9,9,0,3,0,0,0,3,0,9,0,0,0,9,1,3,9,3,9,1,3,3,0,9,

0,9,0,3,9,9,9,3,0),nrow=9,ncol=9,byrow=FALSE) 

 

#calculate the reachability matrices 

A92<-A9%*%A9  

A32<-A3%*%A3 

A12<-A1%*%A1 

#AT2<-AT%*%AT 

 

# Make the labels 

labeldata<-c("GEN","CYP","ENV","EVR","MIS","MPL","SAW","UNK","HPF") 

https://www.nerc.com/pa/rrm/ea/ERO_EAP_Documents%20DL/ERO_EAP_v4.0_final.pdf
https://www.nrc.gov/docs/ML16287A734.pdf
mailto:patrick.oconnor@rfirst.org
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datalabel=data.frame(row=c("GEN","CYP","ENV","EVR","MIS","MPL","SAW","UNK","HPF"),column=c("GEN","CYP","ENV","EVR","MIS","

MPL","SAW","UNK","HPF")) 

 

#Create the plots and DSMs 

A9TR<-t(A9) 

gplot(A9TR,usecurv=TRUE,edge.lwd=0.5,vertex.cex=2,label=labeldata) 

sociomatrixplot(A9,labels=datalabel) 

sociomatrixplot(A92,labels=datalabel) 

 

A3TR<-t(A3) 

gplot(A3TR,usecurv=TRUE,edge.lwd=0.5,vertex.cex=2,label=labeldata) 

sociomatrixplot(A3,labels=datalabel) 

sociomatrixplot(A32,labels=datalabel) 

 

A1TR<-t(A1) 

gplot(A1TR,usecurv=TRUE,edge.lwd=0.5,vertex.cex=2,label=labeldata) 

sociomatrixplot(A1,labels=datalabel) 

sociomatrixplot(A12,labels=datalabel) 

 

ATR<-t(AT) 

gplot(ATR,usecurv=TRUE,edge.lwd=0.5,vertex.cex=2,label=labeldata) 

sociomatrixplot(AT,labels=datalabel) 

sociomatrixplot(AT2,labels=datalabel) 

 

# unused functions 

#r=reachability(A) 

#geodist(A) #see counts 

#prestige(A) #opposite of  

#neighborhood(A,1) #shows the first sets by column 

#neighborhood(A,2) #show the second sets by column 

 

#Convert to igraphs and produce the edge lists - paste these into Excel - look at chart to find middles for the seconds 

library(igraph) 

g<-graph_from_adjacency_matrix(A9TR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

A92TR<-t(A92) 

g<-graph_from_adjacency_matrix(A92TR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

 

g<-graph_from_adjacency_matrix(A3TR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

A32TR<-t(A32) 

g<-graph_from_adjacency_matrix(A32TR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

 

g<-graph_from_adjacency_matrix(A1TR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

A12TR<-t(A12) 

g<-graph_from_adjacency_matrix(A12TR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

 

g<-graph_from_adjacency_matrix(ATTR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

AT2TR<-t(AT2) 

g<-graph_from_adjacency_matrix(AT2TR, mode = c("directed"), weighted = NULL,diag = FALSE, add.colnames = labeldata, add.rownames = 

labeldata) 

vertex_attr(g) <- list(name = labeldata) 

as_edgelist(g) 

 


