
22nd INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING CONFERENCE,

DSM 2020

CAMBRIDGE, MASSACHUSETTS, USA, 13 – 15 October, 2020

DSM 2020 155

Enhancing Visibility in Agile Program Increment DSMs

Siddharth Bajpai1, Steven D. Eppinger1, Nitin R. Joglekar2

1 Massachusetts Institute of Technology, Cambridge, MA, USA
2 Boston University, Boston, MA, USA

Abstract: Program Increments (PIs) are sequences of consecutive sprints during

SAFe implementation of agile developments. SAFe work is planned at two levels of

granularity: (i) stories, which create tasks (within a sprint team) and account for task

interactions at a fine level of granularity; and (ii) features (often decomposed into

stories), which account for interactions at a coarser level of granularity. A common

practice in PI planning, involving 10-15 teams, is to suppress interactions at the story

level and focus on interactions at the feature level instead. We create two DSMs for

a PI planning process – one based on story interactions, and another based on

feature interactions. We find a nearly 9X increase in interactions at the finer level,

i.e. more granular interaction, compared to a DSM based on coarser level

interaction data. We discuss theory and practice implications for using more

granular DSMs during PI Planning and oversight processes.

Keywords: Agile, Data Granularity, Interactions, Program Increment, SAFe

1 Introduction

Agile development has been envisioned to create expedient processes for incorporating

dynamic customer input into iterative and incremental software development (Agile

Manifesto 2001). The very first tenet of this agile manifesto for “uncovering better ways

of developing software” is valuing “individuals and interactions over processes and tools.”

This paper focuses on management of interactions in development projects that follow a

widely used Scaled Agile Framework (SAFe) approach to agile work (Leffingwell 2008).

Within this framework, interactions are managed through structured processes such as

daily scrum meetings, bi-weekly sprints, periodic Program Increment (PI) planning

workshops – held typically every 10 weeks, and coordination across PIs through scheduled

and nested product planning cycles. Since interactions between tasks create dependencies,

and examination of the network of dependencies may yield important insights for better

project management, we turn to Dependency Structure Matrix (DSM) analysis. Related

research has delved into the question: how can DSM analysis provide insights above and

beyond conventional agile development and information processing practices (Srinivasan

et al. 2019, Bajpai et al. 2019)? These earlier works showed that DSM analyses can provide

insights for alternative organization of dependencies, along with predictions for the impact

of these interactions on development performance.

It is common within SAFe implementations to track different types of data at different

levels of granularity while managing the scope of work, by putting features and stories into

different work containers, as shown in Table 1. Finer granularity in this case is defined as

provision of more details in terms of defining the scope of work precisely. This difference

in scope offers differing level of granularity in terms of interactions between tasks. For

Part IV: Organizational Architectures

156 DSM 2020

instance, team tasks, typically associated with daily scrums, are focused on implementing

use-case stories into software code. An example of a story during development of a user

interface is a “data explorer” that is stored as a table in a data warehouse, along with the

specification, “when a table is selected, display the variable names in it”. Stories are

typically created by decomposing features which customers would use. Building on the

“data explorer” example from above, a related feature that uses “data explorer,” and some
other stories, could be “search a variable name across databases.” Related interaction data

are tracked in information systems, such as issue-tracking databases. These issues and a

backlog of stories and features form the basis of discussions for planning work during daily

scrums and during SAFe Program Increment planning meetings every 10 weeks.

Table 2: Definitions of work containers in SAFe

Scope Unit Description Time Scale Resource Scale

Feature
A stakeholder need (specified with

coarser level of granularity)

Single PI (~ 10

weeks)
Multiple Teams

Story

Single desired functionality formed

by splitting a feature, (specified

with a finer level of granularity)

Single iteration

over several

weeks within a PI

Single team

The goal of these discussions is to create an artifact known as the PI Planning Board. The

unit of analysis within a Planning Board is features. A stylized example is shown in Figure

1. Dependencies in this board may be temporal (e.g., start of iteration 1.2 will depend on

completion of work in iteration 1.1 for team Dolphins). Dependencies may also be shown

across teams as red strings either within a single iteration (e.g., during iteration 1.3, team

Dolphins provides a significant input to team Iguanas and thus a dependency is identified)

or across iterations. Moreover, teams recognize that these dependencies exist both at the

story and at the feature level while planning for their work within a PI. Therefore, teams

plan for and track interactions at two levels of granularity: stories with finer level of

granularity and features at a coarser level of granularity.

Level of granularity has been shown in the design management literature to have bearing

on system architecture. For example, Chiriac et al. (2011) find that the degree of modularity

can vary for the same system when the system is represented at the two different levels of

granularity. They argue that the level of granularity in decomposition can distort the results

of architectural analysis and care must be taken in defining the system decomposition for

such analysis. Similarly, Maier et al. (2016) discuss the role of abstraction in modeling and

the resulting importance of model granularity. Thompson (2019) describes allied ideas

such as agile project management with Kanban, requirement definition, and resource

planning for development of hardware and software products. However, this literature does

not explore project management implications, such as task sequencing decisions, during

agile PI planning. This motivates our key research question: what is the level of information

loss associated with PI planning when interaction data are aggregated at the feature-level,

rather than at the story-level?

Bajpai, Siddharth; Joglekar, Nitin; Eppinger, Steven

DSM 2020 157

Figure 1: SAFe 5.0 Program Board (source: v46.scaledagileframework.com)

We have designed a field study to collect case evidence on interaction data at two levels of

granularity and populated the two separate PI DSMs using these data. This paper reports

on our field work and its findings. The rest of this paper is organized as follows: section 2

lays down the rationale for modeling PI DSMs, section 3 describes our field study, section

4 describes the two DSMs and provides a statistical comparison using ANOVA analysis.

We find significant differences in the dependency structures across these two DSMs. We

conclude the paper by discussing the implications of these comparisons for theories that

guide PI Planning rationale. We indicate ways in which DSMs based on granular data may

augment and improve conventional PI planning.

2 Modeling Program Increment DSMs

2.1 Program Increment Planning and Program Board

A program increment typically features 5 sprints (i.e., scheduled cycles of iterations). The

first four sprints comprise the planned development work, including integration and testing

as stories are completed by each of the teams. While the fifth sprint includes release of

completed features, it is largely devoted to forward planning for the next PI, including any

advance development required before the PI starts. All this work is executed by typically

10+ teams, collectively termed as the Agile Release Train (ART), which may bring in many

hundreds of stories and 50-100 features into their PI discussion. The PI Planning event is

typically a 2-day face-to-face workshop involving the entire ART and its customer

representatives (or “Business Owners”). The goal is to employ the agile principle of “face-

to-face conversation” (Schwaber 2009). The teams align on a “Program Vision” and
business context, and come up with a shared plan for the program increment. Specifically,

self-organizing agile teams select the features they plan to implement within the PI; these

teams then coordinate to define a mutually agreed plan communicated to business

stakeholders.

Part IV: Organizational Architectures

158 DSM 2020

A key part of teams committing to a common plan is identification and visualization of

dependencies between the work of the various teams, and from features to deliverable

milestones. The tool used for this is known as a Program Board. The board lays out team

names in rows, with each team’s row forming a “swimlane” of work over the course of the
PI. Each team’s features are represented within the swimlane for the team, with the five

sprints laid out in columns. Teams write every feature on a card and place them in their

swimlane within the iteration in which they plan to complete each feature. Dependencies

between teams or milestones are identified by tying cards together with a red string, as

illustrated in the stylized Program Board of Figure 1.

2.2 Modeling Considerations

To facilitate meaningful face-to-face conversation, the representation of coordination

requirements on the Program Board is intentionally limited. Guiding theory behind such

information hiding during development is to improve clarity of message for individual

teams and reduce coordination burden (Yassine et al. 2003, Gomes and Joglekar 2008,

Ebert and Paasivaara 2017, Thompson 2019). Typically, only directly relevant features are

represented within a team’s swim lane on a Program Board. Likewise, significant

dependencies are represented by a string connecting either two features, a feature and a

milestone, or a feature with significant input from another team. This should serve to clarify

what dependencies are, without modifying the SAFe PI Board diagram in Fig 1,

Figure 2. Stylized PI DSM

Teams may have story-level dependencies that are nevertheless important constraints on

the plan. Also, the dependency represented as a string may be unidirectional, bidirectional

or could even create a loop of dependencies. There may be additional risk factors, affecting

the expected success of the PI Plan, not captured on the Program Board. Within these visual

limitations, the ability of individual teams or a system-level owner such as the Release

Train Engineer (who leads the ART) to suggest improvements or management

Bajpai, Siddharth; Joglekar, Nitin; Eppinger, Steven

DSM 2020 159

interventions is also limited. Key milestones are also represented on the Program Board.

Examples of these include system releases (which occur at a fixed schedule, e.g. the first

Monday of every month), major external releases (e.g. a product launch date), or other

fixed externalities (e.g. vendor system updates, regulatory deadlines etc.). Milestones

interact with the plan both as constraints to schedule and sometimes as sources of new

information or change (e.g. feedback after a monthly release).

The type of DSM model we use to represent the structure of a single PI is shown in Figure

2. The DSM includes a sequence of five sprints over the PI, with the team interactions laid

out for each iteration. Interspersed between the sprints are the milestones. This matrix does

not specify features or stories as entities; i.e. it only reveals task interactions between teams.

Additional details for allied DSM modeling choices are described in Bajpai (2020).

3 Field Study

3.1 Site

Swisscom AG is a leading telecommunications provider in Switzerland. Swisscom holds

large market shares of mobile, broadband internet, and TV telecommunication in its

domestic residential and commercial markets. Swisscom is known for its premium quality

offerings, which command a premium price. We studied the PI Planning process for the

Agile Release Train “Data Lake”, which is a part of the Large Solution “Data, Analytics &
AI” (DNA) program. In addition to critical business analytics services, DNA also provides

storage, computation and access infrastructure and services to other Swisscom analysts and

engineers leveraging Swisscom’s data. The Data Lake ART, together with five other ARTs

comprise the DNA Large Solution. Four of these five ARTs are analytics-focused, and one

is focused on developing applications for business users. All six ARTs do their PI Planning

together in a single event.

3.2 Data Collection & Processing Methodology

Data presented in this paper were collected over the course of 4.5 months in 2019 at

Swisscom, the organization which serves both as the research subject as well as the sponsor

for this project. Data were collected for the model described below using three means: 1)

Live observation during a PI Planning session including discussions and agreements

between Data Lake development team members and customer teams; 2) The PI Program

Board (showing features and hard technical dependencies) and team-level planning boards

(showing story-level scheduling) generated during the meeting; 3) Additional interviews

with product owners from eight out of twelve development teams and two of the five other

ARTs.

Our method for aggregation and processing of dependency data is consistent with

established practices for aggregation and comparison of DSM metrices (see Chen and Lin

2003, and DSM literature e.g., Eppinger and Browning 2012). For each individual feature

represented on the Program Board, anticipated interactions needed to successfully

complete the feature in the PI were recorded. There were two sources for the interactions

data: ‘tasks’ in a tracking system (using a software called Jira), and from field interviews.

Part IV: Organizational Architectures

160 DSM 2020

Four categories of interactions were recorded: inputs/ enablers, feature/technical

dependency; coordination and feedback. Team interactions were modeled for each sprint

and across sprints. This means that there were interactions represented between 19 teams

(12 Data Lake engineering teams + 1 architecture team + 5 DNA ARTs + 1 ‘team’
representing Swisscom-wide interactions) over the course of five sprints in the PI. In

addition, three milestone events were also included as entities. This creates a matrix of size

98x98 (i.e. 19*5 + 3). Each cell in the matrix represents an interaction between two teams.

Two groups of interactions captured as DSMs (based on story-level and feature-level data)

allow us to explore our research question in two steps: (i) We assemble two DSMs and

compute a compositive interaction vector for each row of the respective DSM; (ii) We

conduct ANOVA tests to explore if differences in these vectors amount to statistically

significant information loss across these two groups of interactions. Then, we discuss the

implication of this significance on feature-level planning while managing a PI.

Figure 3. Two Sprints of PI DSM Based on Story-Level Data

(Number of Interactions for Full PI DSM Using Story-Level Data = 304)

Bajpai, Siddharth; Joglekar, Nitin; Eppinger, Steven

DSM 2020 161

4 Results

For ease of depiction, we present the first two sprints and one key milestone of the PI in a

39X39 DSM in Figures 3 and 4 based on story- and feature-level data, respectively.

Categories of interactions are shown in different colors as indicated by a legend in Figure

3. A full DSM based on story-level data is shown as Figure 5. Owing to page size

constraints, some details (e.g., row names) are suppressed while patterns of changes in

interactions across sprints can be ascertained.

Figure 4. Two Sprints of PI DSM Based on Feature-Level Data

(Number of Interactions for Full PI DSM Using Feature-Level Data = 32)

4.1 Aggregate Statistics

We have conducted comparisons for the story- and feature-level DSMs using the full

(98x98) matrices. We find that the story-level DSM captures 304 interactions, whereas the

feature-level DSM captures only 32 interactions. In order to assess the statistical

significance of the differences between these two DSMs, we have computed the total

number of interactions in each row (termed as interaction density). Density data are then

normalized between 0 and 1 to create vectors. These normalized vectors are used to

compare the distribution of interactions for two DSMs. Aggregate statistics and ANOVA

Part IV: Organizational Architectures

162 DSM 2020

results are shown in Table 2. They indicate that differences in the distribution of normalized

interaction vectors for the two DSMs (termed as groups in Table 2) are statistically

significant. In this analysis we have weighted all the categories equally. We have also

conducted robustness checks for category weights (e.g., by adjusting relative weights on

inputs versus technical dependencies). Category adjusted results (not shown here for

brevity) are materially consistent with the finding presented in Table 2.

Figure 5. Full PI DSM (98x98) Based on Story-Level Data

5 Implications

This study examines the interaction structure of a PI using DSMs based on different levels

of data granularity. We have identified gaps in literature, in the introduction section, that

draw on intersection of system engineering, SAFe, and agile project management. Our case

work and data analysis bring up follow on opportunities. For instance, research issues

mentioned in section 5.1 may engender new type of theories, extending the literature on

granularity in design (Maier et al. 2016) based on data with finer granularity.

Bajpai, Siddharth; Joglekar, Nitin; Eppinger, Steven

DSM 2020 163

Table 2: ANOVA Single Factor Analysis of Normalized Interaction Vectors

5.1 Research Issues

1) Biases in Decision Making: Suppressing within-team interactions in order improve cross

team communication through PI Planning Board is a recommended best practice (Scaled

Agile, 2019). Our analysis shows that this practice results in a systematic

underrepresentation of interactions (32 in the PI Planning Board instead of 304 that

emerged from the more granular data analysis). Detailed analysis of such a sizable

underestimation could enhance our understanding of planning issues: does this

underestimation stem from interactions with teams that are in close physical proximity such

that coordination could managed informally? What is the dynamic impact of initial

underrepresentation of interactions (in sprint 1) on later sprints? And, given this

underrepresentation, is feature-level planning appropriate for managing a PI?

2) Early Information and Limited Look Ahead: The DSM in Figure 3 shows two square

sub-matrices corresponding with the teamwork in sprint 1 and sprint 2. It also shows

another square sub-matrix for sprint 2, below the sprint 1 sub-matrix. We term this sub-

matrix the early information submatrix. It ought to be possible to improve the predictions

for sprint 2 based on the early information submatrix data from sprint 1 (Bajpai 2020).

Figure 5 ascertains that this pattern is repeated in follow on sprints. That is, inter-sprint

decisions before any sprint can be improved by limited look ahead analysis.

3) Adaptive Organization of PI Teams: Agile work and PI planning are set up to enable

adaptive development. Composition of individual teams and interactions between teams

are managed through PI planning, scrums, and scrum-of-scrums meetings. The square

matrices for each sprint shown in Figure 5 could be put through sequencing and clustering

analyses (Eppinger and Browning 2012) to provide guidance for sequencing tasks, and for

adjusting the organizational interfaces between teams suitably. Bajpai (2020) has provided

examples for such analysis.

5.2 Implementation Opportunities

Aside from the research issues listed above, fieldwork suggests it may be the possible to

automate the generation of PI DSMs in order to support PI planning. For instance, data

collected for the story-level DSM in Figure 3 came from a combination of field interviews

and by querying the information captured by software tool (Jira). It ought to possible to

automate the generation of such granular DSMs.

Groups Count Sum Average Variance

DSM Based on Story Level Data 98 41.08 0.42 0.11

DSM Based on Feature Level Data 98 24.10 0.25 0.13

Source of Variation SS df MS F P-value F crit

Between Groups 1.47 1 1.47 12.10 0.0006 3.8898

Within Groups 23.59 194 0.12

Total 25.06 195

Part IV: Organizational Architectures

164 DSM 2020

6 Conclusion

An overarching theme behind our research is to assess if DSM capabilities can improve the

performance of agile work by enhancing current best practices such as implementation of

Scaled Agile work. We have developed a new type of DSM to account for interactions

during PI planning and oversight. Our analysis shows that it is possible to populate such a

PI DSM with interactions based on (lower) story-level data. This generates a DSM of

interactions that is statistically different from conventional PI Planning Board. Preliminary

findings on analysis of granular interactions also indicates that use of finer granularity

(story-level) data is a fruitful line of enquiry for research on improving the PI processes.

References

Agile Manifesto, 2001. Manifesto for Agile Software Development. https://agilemanifesto.org/

Chiriac, N., Hölttä-Otto, K., Lysy, D., & Suk Suh, E. (2011). Level of Modularity and Different

Levels of System Granularity. Journal of Mechanical Design, 133(10).

Gomes, P.J., Joglekar, N.R. 2008. Linking Modularity with Problem Solving and Coordination

Efforts. Managerial and Decision Economics, 29(5), 443-457.

Bajpai, S. 2020. Planning Large-Scale Agile Development Using a Dependency Structure Mapping

Model, Masters Thesis, MIT, Cambridge, MA.

Bajpai, S., Eppinger, S.D., Joglekar, N.R. 2019. The Structure of Agile Development Under Scaled

Planning and Coordination. In DS 97: Proceedings of the 21st International DSM Conference

(DSM 2019).

Ebert, C., Paasivaara, M. 2017. Scaling Agile. IEEE Software, 34(6), 98-103.

Leffingwell, D. 2007. Scaling Software Agility: Best Practices for Large SAFe Enterprises. Addison-

Wesley. ISBN 978-0321458193.

Maier, J.F.; Eckert, C.M. and Clarkson, P.J. 2016. Model Granularity and Related Concepts. In:

Proceedings of the DESIGN 2016, 14th International Design Conference, pp. 1327–1336.

Chen, S., Lin, L. 2003. Decomposition of interdependent task group for concurrent

engineering Computers & Industrial Engineering, 44(3), 435-459.

Schwaber, K. 2009. Agile Project Management with Scrum. O'Reilly Media,

Inc. ISBN 9780735637900.

Scaled Agile, 2019. https://www.scaledagileframework.com

Srinivasan, R., Eppinger, S.D., Joglekar N.R. 2019. The Structure of DevOps in Product-Service

System Development. Proceedings of the International Conference on Engineering Design

(ICED19), Delft, The Netherlands.

Thompson, K.W. 2019. Solutions for Agile Governance in the Enterprise (SAGE): Agile Project,

Program, and Portfolio Management for Development of Hardware and Software Products.

Sophont Press.

Yassine, A., Joglekar, N., Braha, D., Eppinger, S., Whitney, D. 2003. Information Hiding in Product

Development: The Design Churn Effect. Research in Engineering Design, 14(3), 145-161.

Contact: Prof. Steven Eppinger, Massachusetts Institute of Technology, eppinger@mit.edu

https://agilemanifesto.org/
https://agilemanifesto.org/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0321458193
https://books.google.com/books?id=RpYX01XVMksC&lpg=PP1&dq=%22Jeff%20Sutherland%22&pg=PT169#v=onepage&q=%22Jeff%20Sutherland%22&f=false
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780735637900
https://www.scaledagileframework.com/

