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Abstract: Program Increments (PIs) are sequences of consecutive sprints during 

SAFe implementation of agile developments. SAFe work is planned at two levels of 

granularity: (i) stories, which create tasks (within a sprint team) and account for task 

interactions at a fine level of granularity; and (ii) features (often decomposed into 

stories), which account for interactions at a coarser level of granularity. A common 

practice in PI planning, involving 10-15 teams, is to suppress interactions at the story 

level and focus on interactions at the feature level instead. We create two DSMs for 

a PI planning process – one based on story interactions, and another based on 

feature interactions. We find a nearly 9X increase in interactions at the finer level, 

i.e. more granular interaction, compared to a DSM based on coarser level 

interaction data. We discuss theory and practice implications for using more 

granular DSMs during PI Planning and oversight processes.     
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1 Introduction 

Agile development has been envisioned to create expedient processes for incorporating 

dynamic customer input into iterative and incremental software development (Agile 

Manifesto 2001). The very first tenet of this agile manifesto for “uncovering better ways 

of developing software” is valuing “individuals and interactions over processes and tools.” 

This paper focuses on management of interactions in development projects that follow a 

widely used Scaled Agile Framework (SAFe) approach to agile work (Leffingwell 2008). 

Within this framework, interactions are managed through structured processes such as 

daily scrum meetings, bi-weekly sprints, periodic Program Increment (PI) planning 

workshops – held typically every 10 weeks, and coordination across PIs through scheduled 

and nested product planning cycles. Since interactions between tasks create dependencies, 

and examination of the network of dependencies may yield important insights for better 

project management, we turn to Dependency Structure Matrix (DSM) analysis. Related 

research has delved into the question: how can DSM analysis provide insights above and 

beyond conventional agile development and information processing practices (Srinivasan 

et al. 2019, Bajpai et al. 2019)? These earlier works showed that DSM analyses can provide 

insights for alternative organization of dependencies, along with predictions for the impact 

of these interactions on development performance.   

It is common within SAFe implementations to track different types of data at different 

levels of granularity while managing the scope of work, by putting features and stories into 

different work containers, as shown in Table 1. Finer granularity in this case is defined as 

provision of more details in terms of defining the scope of work precisely. This difference 

in scope offers differing level of granularity in terms of interactions between tasks. For 
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instance, team tasks, typically associated with daily scrums, are focused on implementing 

use-case stories into software code. An example of a story during development of a user 

interface is a “data explorer” that is stored as a table in a data warehouse, along with the 

specification, “when a table is selected, display the variable names in it”. Stories are 

typically created by decomposing features which customers would use. Building on the 

“data explorer” example from above, a related feature that uses “data explorer,” and some 
other stories, could be “search a variable name across databases.” Related interaction data 

are tracked in information systems, such as issue-tracking databases. These issues and a 

backlog of stories and features form the basis of discussions for planning work during daily 

scrums and during SAFe Program Increment planning meetings every 10 weeks.  

Table 2: Definitions of work containers in SAFe 

Scope Unit Description Time Scale Resource Scale 

Feature 
A stakeholder need (specified with 

coarser level of granularity) 

Single PI (~ 10 

weeks) 
Multiple Teams 

Story 

Single desired functionality formed 

by splitting a feature, (specified 

with a finer level of granularity) 

Single iteration 

over several 

weeks within a PI 

Single team 

 

The goal of these discussions is to create an artifact known as the PI Planning Board. The 

unit of analysis within a Planning Board is features. A stylized example is shown in Figure 

1. Dependencies in this board may be temporal (e.g., start of iteration 1.2 will depend on 

completion of work in iteration 1.1 for team Dolphins). Dependencies may also be shown 

across teams as red strings either within a single iteration (e.g., during iteration 1.3, team 

Dolphins provides a significant input to team Iguanas and thus a dependency is identified) 

or across iterations. Moreover, teams recognize that these dependencies exist both at the 

story and at the feature level while planning for their work within a PI. Therefore, teams 

plan for and track interactions at two levels of granularity: stories with finer level of 

granularity and features at a coarser level of granularity.  

Level of granularity has been shown in the design management literature to have bearing 

on system architecture. For example, Chiriac et al. (2011) find that the degree of modularity 

can vary for the same system when the system is represented at the two different levels of 

granularity. They argue that the level of granularity in decomposition can distort the results 

of architectural analysis and care must be taken in defining the system decomposition for 

such analysis. Similarly, Maier et al. (2016) discuss the role of abstraction in modeling and 

the resulting importance of model granularity. Thompson (2019) describes allied ideas 

such as agile project management with Kanban, requirement definition, and resource 

planning for development of hardware and software products. However, this literature does 

not explore project management implications, such as task sequencing decisions, during 

agile PI planning. This motivates our key research question: what is the level of information 

loss associated with PI planning when interaction data are aggregated at the feature-level, 

rather than at the story-level?  
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Figure 1: SAFe 5.0 Program Board (source: v46.scaledagileframework.com) 

We have designed a field study to collect case evidence on interaction data at two levels of 

granularity and populated the two separate PI DSMs using these data. This paper reports 

on our field work and its findings. The rest of this paper is organized as follows: section 2 

lays down the rationale for modeling PI DSMs, section 3 describes our field study, section 

4 describes the two DSMs and provides a statistical comparison using ANOVA analysis. 

We find significant differences in the dependency structures across these two DSMs. We 

conclude the paper by discussing the implications of these comparisons for theories that 

guide PI Planning rationale. We indicate ways in which DSMs based on granular data may 

augment and improve conventional PI planning.  

2 Modeling Program Increment DSMs 

2.1 Program Increment Planning and Program Board  

A program increment typically features 5 sprints (i.e., scheduled cycles of iterations). The 

first four sprints comprise the planned development work, including integration and testing 

as stories are completed by each of the teams. While the fifth sprint includes release of 

completed features, it is largely devoted to forward planning for the next PI, including any 

advance development required before the PI starts. All this work is executed by typically 

10+ teams, collectively termed as the Agile Release Train (ART), which may bring in many 

hundreds of stories and 50-100 features into their PI discussion. The PI Planning event is 

typically a 2-day face-to-face workshop involving the entire ART and its customer 

representatives (or “Business Owners”). The goal is to employ the agile principle of “face-

to-face conversation” (Schwaber 2009). The teams align on a “Program Vision” and 
business context, and come up with a shared plan for the program increment. Specifically, 

self-organizing agile teams select the features they plan to implement within the PI; these 

teams then coordinate to define a mutually agreed plan communicated to business 

stakeholders.  
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A key part of teams committing to a common plan is identification and visualization of 

dependencies between the work of the various teams, and from features to deliverable 

milestones. The tool used for this is known as a Program Board. The board lays out team 

names in rows, with each team’s row forming a “swimlane” of work over the course of the 
PI. Each team’s features are represented within the swimlane for the team, with the five 

sprints laid out in columns. Teams write every feature on a card and place them in their 

swimlane within the iteration in which they plan to complete each feature. Dependencies 

between teams or milestones are identified by tying cards together with a red string, as 

illustrated in the stylized Program Board of Figure 1. 

2.2 Modeling Considerations 

To facilitate meaningful face-to-face conversation, the representation of coordination 

requirements on the Program Board is intentionally limited. Guiding theory behind such 

information hiding during development is to improve clarity of message for individual 

teams and reduce coordination burden (Yassine et al. 2003, Gomes and Joglekar 2008, 

Ebert and Paasivaara 2017, Thompson 2019). Typically, only directly relevant features are 

represented within a team’s swim lane on a Program Board. Likewise, significant 

dependencies are represented by a string connecting either two features, a feature and a 

milestone, or a feature with significant input from another team. This should serve to clarify 

what dependencies are, without modifying the SAFe PI Board diagram in Fig 1, 

 

Figure 2. Stylized PI DSM 

Teams may have story-level dependencies that are nevertheless important constraints on 

the plan. Also, the dependency represented as a string may be unidirectional, bidirectional 

or could even create a loop of dependencies. There may be additional risk factors, affecting 

the expected success of the PI Plan, not captured on the Program Board. Within these visual 

limitations, the ability of individual teams or a system-level owner such as the Release 

Train Engineer (who leads the ART) to suggest improvements or management 
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interventions is also limited. Key milestones are also represented on the Program Board. 

Examples of these include system releases (which occur at a fixed schedule, e.g. the first 

Monday of every month), major external releases (e.g. a product launch date), or other 

fixed externalities (e.g. vendor system updates, regulatory deadlines etc.). Milestones 

interact with the plan both as constraints to schedule and sometimes as sources of new 

information or change (e.g. feedback after a monthly release).  

The type of DSM model we use to represent the structure of a single PI is shown in Figure 

2. The DSM includes a sequence of five sprints over the PI, with the team interactions laid 

out for each iteration. Interspersed between the sprints are the milestones. This matrix does 

not specify features or stories as entities; i.e. it only reveals task interactions between teams.  

Additional details for allied DSM modeling choices are described in Bajpai (2020). 

3 Field Study  

3.1 Site  

Swisscom AG is a leading telecommunications provider in Switzerland. Swisscom holds 

large market shares of mobile, broadband internet, and TV telecommunication in its 

domestic residential and commercial markets. Swisscom is known for its premium quality 

offerings, which command a premium price. We studied the PI Planning process for the 

Agile Release Train “Data Lake”, which is a part of the Large Solution “Data, Analytics & 
AI” (DNA) program. In addition to critical business analytics services, DNA also provides 

storage, computation and access infrastructure and services to other Swisscom analysts and 

engineers leveraging Swisscom’s data.  The Data Lake ART, together with five other ARTs 

comprise the DNA Large Solution. Four of these five ARTs are analytics-focused, and one 

is focused on developing applications for business users. All six ARTs do their PI Planning 

together in a single event. 

3.2 Data Collection & Processing Methodology 

Data presented in this paper were collected over the course of 4.5 months in 2019 at 

Swisscom, the organization which serves both as the research subject as well as the sponsor 

for this project. Data were collected for the model described below using three means: 1) 

Live observation during a PI Planning session including discussions and agreements 

between Data Lake development team members and customer teams; 2) The PI Program 

Board (showing features and hard technical dependencies) and team-level planning boards 

(showing story-level scheduling) generated during the meeting; 3) Additional interviews 

with product owners from eight out of twelve development teams and two of the five other 

ARTs.  

Our method for aggregation and processing of dependency data is consistent with 

established practices for aggregation and comparison of DSM metrices (see Chen and Lin 

2003, and DSM literature e.g., Eppinger and Browning 2012). For each individual feature 

represented on the Program Board, anticipated interactions needed to successfully 

complete the feature in the PI were recorded. There were two sources for the interactions 

data: ‘tasks’ in a tracking system (using a software called Jira), and from field interviews. 
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Four categories of interactions were recorded: inputs/ enablers, feature/technical 

dependency; coordination and feedback. Team interactions were modeled for each sprint 

and across sprints. This means that there were interactions represented between 19 teams 

(12 Data Lake engineering teams + 1 architecture team + 5 DNA ARTs + 1 ‘team’ 
representing Swisscom-wide interactions) over the course of five sprints in the PI. In 

addition, three milestone events were also included as entities. This creates a matrix of size 

98x98 (i.e. 19*5 + 3).  Each cell in the matrix represents an interaction between two teams. 

Two groups of interactions captured as DSMs (based on story-level and feature-level data) 

allow us to explore our research question in two steps: (i) We assemble two DSMs and 

compute a compositive interaction vector for each row of the respective DSM; (ii) We 

conduct ANOVA tests to explore if differences in these vectors amount to statistically 

significant information loss across these two groups of interactions. Then, we discuss the 

implication of this significance on feature-level planning while managing a PI. 

 

Figure 3. Two Sprints of PI DSM Based on Story-Level Data 

(Number of Interactions for Full PI DSM Using Story-Level Data = 304) 
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4 Results  

For ease of depiction, we present the first two sprints and one key milestone of the PI in a 

39X39 DSM in Figures 3 and 4 based on story- and feature-level data, respectively. 

Categories of interactions are shown in different colors as indicated by a legend in Figure 

3. A full DSM based on story-level data is shown as Figure 5. Owing to page size 

constraints, some details (e.g., row names) are suppressed while patterns of changes in 

interactions across sprints can be ascertained. 

 

Figure 4. Two Sprints of PI DSM Based on Feature-Level Data 

(Number of Interactions for Full PI DSM Using Feature-Level Data = 32) 

4.1 Aggregate Statistics  

We have conducted comparisons for the story- and feature-level DSMs using the full 

(98x98) matrices. We find that the story-level DSM captures 304 interactions, whereas the 

feature-level DSM captures only 32 interactions. In order to assess the statistical 

significance of the differences between these two DSMs, we have computed the total 

number of interactions in each row (termed as interaction density). Density data are then 

normalized between 0 and 1 to create vectors. These normalized vectors are used to 

compare the distribution of interactions for two DSMs. Aggregate statistics and ANOVA 
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results are shown in Table 2. They indicate that differences in the distribution of normalized 

interaction vectors for the two DSMs (termed as groups in Table 2) are statistically 

significant. In this analysis we have weighted all the categories equally. We have also 

conducted robustness checks for category weights (e.g., by adjusting relative weights on 

inputs versus technical dependencies). Category adjusted results (not shown here for 

brevity) are materially consistent with the finding presented in Table 2.  

 

 

Figure 5. Full PI DSM (98x98) Based on Story-Level Data 

5 Implications 

This study examines the interaction structure of a PI using DSMs based on different levels 

of data granularity. We have identified gaps in literature, in the introduction section, that 

draw on intersection of system engineering, SAFe, and agile project management. Our case 

work and data analysis bring up follow on opportunities. For instance, research issues 

mentioned in section 5.1 may engender new type of theories, extending the literature on 

granularity in design (Maier et al. 2016) based on data with finer granularity. 
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Table 2: ANOVA Single Factor Analysis of Normalized Interaction Vectors 

 

5.1 Research Issues 

1) Biases in Decision Making: Suppressing within-team interactions in order improve cross 

team communication through PI Planning Board is a recommended best practice (Scaled 

Agile, 2019). Our analysis shows that this practice results in a systematic 

underrepresentation of interactions (32 in the PI Planning Board instead of 304 that 

emerged from the more granular data analysis). Detailed analysis of such a sizable 

underestimation could enhance our understanding of planning issues: does this 

underestimation stem from interactions with teams that are in close physical proximity such 

that coordination could managed informally?  What is the dynamic impact of initial 

underrepresentation of interactions (in sprint 1) on later sprints? And, given this 

underrepresentation, is feature-level planning appropriate for managing a PI?      

2) Early Information and Limited Look Ahead: The DSM in Figure 3 shows two square 

sub-matrices corresponding with the teamwork in sprint 1 and sprint 2. It also shows 

another square sub-matrix for sprint 2, below the sprint 1 sub-matrix. We term this sub-

matrix the early information submatrix. It ought to be possible to improve the predictions 

for sprint 2 based on the early information submatrix data from sprint 1 (Bajpai 2020). 

Figure 5 ascertains that this pattern is repeated in follow on sprints. That is, inter-sprint 

decisions before any sprint can be improved by limited look ahead analysis.  

3) Adaptive Organization of PI Teams: Agile work and PI planning are set up to enable 

adaptive development. Composition of individual teams and interactions between teams 

are managed through PI planning, scrums, and scrum-of-scrums meetings. The square 

matrices for each sprint shown in Figure 5 could be put through sequencing and clustering 

analyses (Eppinger and Browning 2012) to provide guidance for sequencing tasks, and for 

adjusting the organizational interfaces between teams suitably. Bajpai (2020) has provided 

examples for such analysis.  

5.2 Implementation Opportunities                                                                                                     

Aside from the research issues listed above, fieldwork suggests it may be the possible to 

automate the generation of PI DSMs in order to support PI planning. For instance, data 

collected for the story-level DSM in Figure 3 came from a combination of field interviews 

and by querying the information captured by software tool (Jira). It ought to possible to 

automate the generation of such granular DSMs. 

Groups Count Sum Average Variance

DSM Based on Story Level Data 98 41.08 0.42 0.11

DSM Based on Feature Level Data 98 24.10 0.25 0.13

Source of Variation SS df MS F P-value F crit

Between Groups 1.47 1 1.47 12.10 0.0006 3.8898

Within Groups 23.59 194 0.12

Total 25.06 195
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6 Conclusion 

An overarching theme behind our research is to assess if DSM capabilities can improve the 

performance of agile work by enhancing current best practices such as implementation of 

Scaled Agile work. We have developed a new type of DSM to account for interactions 

during PI planning and oversight. Our analysis shows that it is possible to populate such a 

PI DSM with interactions based on (lower) story-level data.  This generates a DSM of 

interactions that is statistically different from conventional PI Planning Board. Preliminary 

findings on analysis of granular interactions also indicates that use of finer granularity 

(story-level) data is a fruitful line of enquiry for research on improving the PI processes.    
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