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Abstract: Optimization of components and commonality in a product family can be prohibitively expensive due to 
combinatorics. In a previously presented approach, numerical effort is significantly reduced by computing permissible 
intervals for design variables of each product variant. Components can be shared where intervals overlap. However, 
these intervals tend to be small and have little overlap. This paper introduces solution-compensation spaces into product 
family design. Permissible intervals are determined only for so-called early-decision variables that are relevant for 
commonality within the product family. All other variables are treated as so-called late-decision variables. They are 
adjusted for each component once a commonality pattern is established. They compensate for the choice of early-
decision variables. This increases interval size and ensures greater flexibility to simultaneously design the components 
of the product family, while the dependency between the design variables is fully considered. The approach is applied 
to sensor design and positioning for automated vehicles. 
Keywords: Product Family Design, Solution Spaces, Complexity Management 

1 Introduction 

Automated vehicles use perception sensors to detect relevant objects in their surrounding (Jackson et al., 2021; Maurer et 
al., 2016). In numerous papers, the performance of perception sensors is analysed to compute challenging test scenarios 
(Gogri et al., 2020; Ponn et al., 2020), which allows the conclusion that a robust choice of characteristics and positions of 
perception sensors is safety critical. For a series production of automated vehicles, the costs of state-of-the art perception 
sensors play an increasingly larger role (Broggi et al., 2013; Khatab et al., 2022; Lambert et al., 2020). To decrease overall 
costs and minimize the introduction of model-specific faults, an entire product family of automated vehicles is considered. 
Using identical sensors, i.e., with identical properties and from the same manufacturer for different product variants, comes 
with an additional safety benefit. Rare hardware or integration faults of this sensor model (Bock et al., 2018; Koopman 
and Wagner, 2016) are more likely to be detected if it is used more often and subsequently the error can be remedied once 
for the entire fleet.  
A product family consists of several vehicle variants, which can have smaller differences, e.g., different suspension 
systems, but it may also include models where shape and dynamic behaviour of the vehicles vary considerably. The design 
of a perception sensor within this paper consists of its characteristics, e.g., the opening angle or resolution of a camera, 
and its positioning. The term “positioning” is used in this paper to describe the sensor mounting location and its orientation 
on the surface of the vehicle. Several perception sensors and several vehicle variants lead to a large number of different 
combinations in the product family optimization. While evaluating the cost of the product family might be comparatively 
cheap (Ehrlenspiel et al., 2020), simulating different traffic scenarios, combined with various environmental conditions, 
leads overall to a high-dimensional parameter space that has to be explored to find the optimal performance of the 
perception system. A method based on solution-spaces was introduced to reduce the possible number of combinations 
(Eichstetter et al., 2015).  
Permissible intervals for the different design variables, where requirements are fulfilled, are computed for each variant 
individually. Independent intervals for the different design variables reduce the combinatorics of the product family design 
problem. However, instead of finding one globally optimal solution, the solution-space approach is developed to determine 
requirements for different components (permissible intervals for the design variables) from system-level requirements. By 
maximizing the volume of a box of good designs, the different components can be optimized independently (Zimmermann 
and von Hoessle, 2013), e.g., in a distributed development process. The decoupling, however, comes at the price of 
neglecting the good designs outside of the box. For product family optimization, components can be shared where the 
intervals overlap. This means that the flexibility to share components may be lost, possibly also the area where the overall 
cost has its global minimum. The original method that maximizes commonality is extended to incorporate a more realistic 
cost model that also accounts for oversizing of individual components by adding a subsequent cost optimization algorithm 
(Rötzer et al., 2020). 
Instead of a design approach that allows to select the design variables completely independently, but retaining some 
advantages of the coupling, i.e., access to the complete solution space, a combined design decision approach (Daub et al., 
2020) is selected in this work. Some design variable values are determined first, and the remaining set of design variable 
values is determined based on this selection. One possibility to implement this is the solution-compensation space approach 
(Funk et al., 2019; Vogt et al., 2018b), where variables that can be adjusted in a later design phase are used to compensate 
for limited controllability in early-decision variables.  
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This paper addresses the question how to include solution-compensation spaces into product family design to increase the 
flexibility to optimize the commonality pattern and component designs. At the same time, the advantages of using the 
solution space approach to decrease the combinatorics is retained. The paper is organized as follows. In the next section, 
first the general product family design optimization problem is introduced. Existing approaches to optimize product 
families, classify design decisions and compute solution-compensation spaces are revised. In the following Section 3, a 
new algorithm is introduced to design product families using solution-compensation spaces, which is demonstrated in an 
example in Section 4. Finally, the findings are summarized in the last section and possible areas to explore further are 
given. 

2 Related Work 

2.1 Product family design 

Product family design is the simultaneous design of multiple product variants (Fujita and Yoshida, 2004). This work 
focuses on scale-based product families (Simpson et al., 2001), which means that between different variants, components 
are described using the same design variables, only their magnitude, i.e., scaling, varies. In contrast to this, module-based 
product families allow to add or exchange entire modules that might be described by different design variables. A compact 
problem statement is given as 

min
𝑥𝑥,𝜉𝜉

𝐶𝐶𝑃𝑃𝑃𝑃(𝑥𝑥, 𝜉𝜉, 𝑐𝑐)     (1) 

subject to: 𝑔𝑔(𝑒𝑒, 𝑥𝑥) = 𝑣𝑣𝑙𝑙𝑙𝑙 − 𝑣𝑣(𝑥𝑥, 𝑒𝑒) ≤ 0  (2) 

𝑥𝑥𝑙𝑙𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑢𝑢𝑢𝑢  .     (3) 

The design variables 𝑥𝑥 contain the sensor properties. To simplify the explanations, within this paper, each component is 
described using one design variable 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1. . 𝑛𝑛𝐶𝐶, where 𝑛𝑛𝐶𝐶 is the total number of components and also describes the 
dimensionality of the optimization problem. Goal of the product family design is to determine optimal values for each 
design variable 𝑥𝑥𝑖𝑖 for each variant 𝑘𝑘 = 1. . 𝑛𝑛𝑝𝑝 of the total number of product variants 𝑛𝑛𝑝𝑝. The assignment scheme 𝜉𝜉𝑘𝑘𝑘𝑘 ∈
1. . 𝑛𝑛𝐶𝐶𝑉𝑉𝑖𝑖   assigns each product variant 𝑘𝑘 and component 𝑖𝑖 one component variant, where 𝑛𝑛𝐶𝐶𝑉𝑉𝑖𝑖 is the number of variants of 
component 𝑖𝑖. The total cost of the product family 𝐶𝐶𝑃𝑃𝑃𝑃 has to be minimized, see Eq. (1), which also depends on the 
parameters of the cost model 𝑐𝑐 and the assignment scheme 𝜉𝜉. The commonality pattern 𝜁𝜁 determines whether components 
are different or shared between the variants of the product family. For two product variants 𝑃𝑃1 and 𝑃𝑃2, the commonality 
pattern 𝜁𝜁𝑖𝑖  for component 𝑖𝑖 reads 

𝜁𝜁𝑖𝑖
𝑃𝑃1↔𝑃𝑃2 = �1,

0,   
if 𝑥𝑥𝑖𝑖,𝑃𝑃1 = 𝑥𝑥𝑖𝑖,𝑃𝑃2 .

 else.
   (4) 

The visibility 𝑣𝑣 of the relevant objects in the surrounding, which are described using the environment parameters 𝑒𝑒, has to 
exceed a lower boundary 𝑣𝑣𝑙𝑙𝑙𝑙 , see Eq. (2). Finally, the design space is restricted by lower and upper bounds in Eq. (3). This 
problem statement is also given in graphical form in Figure 1, where the design variables and design parameters are given 
in the bottom and the quantities of interest at the top. Links between the nodes are used to indicate the hierarchical 
dependencies in the modeling. If values of the design parameters (environmental parameters 𝑒𝑒 and cost parameters 𝑐𝑐) are 
known and the design variables selected, the quantities of interest are determined.  

 

Figure 1: Graphical representation of the problem statement given in Eqs. (1)-(3). 

As mentioned in the introduction, there are different possibilities to solve this optimization problem. Since the visibility 
is generally a nonlinear function and for complex scenarios even non-convex (e.g., a vehicle has to be detected and 
monitored that turns left or right, each with a certain probability), global optimization algorithms like Genetic Algorithms 
should be used to determine a global optimum (Fujita and Yoshida, 2004). Another approach using the computation of 
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solution spaces (Rötzer et al., 2020) is sketched in Figure 2(b)-2(d) for an example of two design variables and two product 
variants.  
The basic idea of solution space engineering is sketched in Figure 2(a). Instead of determining one design that minimizes 
an objective function and satisfies the constraints, a set of good designs is identified, which constitutes a solution space. 
A solution space is part of the design space that includes only good designs, i.e., designs that satisfy all requirements. In 
Figure 2(a), the complete solution space for an abstract design problem is blue. Regions of the design space where at least 
one requirement is not fulfilled are red. To decouple the selection of design variables, a (𝑛𝑛𝐶𝐶-dimensional) box is determined 
within the complete solution space, such that its volume is maximised and it only contains good designs. Each “side” of 
the box is a permissible interval Ω𝑖𝑖  of design variable 𝑥𝑥𝑖𝑖. The box-shape guarantees that as long as each design variable is 
selected from within the respective permissible interval, the overall design will fulfil all requirements. This offers 
significant flexibility for design. Design variables do not have to assume a specified target value anymore, instead they 
may vary within their intervals to account for additional requirements or constraints, e.g., due to product family design. 
Various algorithms exist to find the permissible intervals for the design variables (Zimmermann and von Hoessle, 2013). 
For an arbitrary example of a product family of two product variants and two design variables, permissible intervals of the 
design variables (box-shaped solution spaces) are computed for each product variant in the first step in Figure 2(b). For 
each design variable, the permissible intervals of both product variants are compared in Figure 2(c) and where they overlap, 
standardization of this component is technically feasible. In this example, the intervals of component 1 overlap and the 
assignment scheme is determined by comparing the costs if 𝑥𝑥1 is shared or not in Figure 2(d). Comparing the intervals of 
both product variants of component 2, they do not overlap and the costs of shared or different selections do not have to be 
evaluated. However, looking at Figure 2(e), where the complete solution spaces of both variants are sketched, it can clearly 
be seen that if the dependencies between the two design variables are considered in the optimization, component 2 could 
also be shared. 

 

Figure 2: Two-level optimization for product family design using solution-space optimization. 

2.2 Interdependent, dependent, independent design decisions 

To amend this shortcoming, we look at the analysis of different design decisions for systems engineering (Daub et al., 
2020). Three fundamentally different ways to reach distributed design decisions are compared, which is sketched in Figure 
3 for two design variables 𝑥𝑥1 and 𝑥𝑥2. They are analysed with respect to costs, which is described as the necessary amount 
of information exchange, and flexibility, which is measured as the volume of the set of possible choices of the design 
variables that fulfil the constraint 𝑔𝑔(𝑥𝑥1, 𝑥𝑥2). 

 

Figure 3: Flow of information for interdependent, independent and dependent design decisions, adapted from (Daub et al., 2020). 
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In interdependent design decisions, a repeated information exchange is necessary to find permissible values for the design 
variables 𝑥𝑥1 and 𝑥𝑥2. Since the full dependency between the design variables is considered, it allows maximal flexibility 
but comes at high costs. For independent designs, the constraint is decomposed first to reach permissible intervals for both 
design variables. While the decomposition also requires effort and reduces flexibility, the design variables can be selected 
in parallel independently from each other once the requirement is decomposed, which is very inexpensive. This principle 
is used for example when box-shaped solution spaces are selected. For the dependent design decision, first the value of 
one design variable is selected and based on this, the second is computed. Compared to the independent design approach, 
it increases the flexibility, since the dependency between the variables is considered, but it also leads to larger costs. The 
dependent design principle is used in the solution-compensation space approach. 

2.3 Solution-compensation spaces 

Solution-compensation spaces are introduced to allow greater flexibility to select design variables when they are decoupled 
using boxed-shaped solution spaces (Vogt et al., 2018b). When the design problem consists of many dimensions and 
constraints, the boxes tend to become very small. The key idea is to divide the design variables into two sets, the early 
decision variables 𝑥𝑥𝐴𝐴 and the late decision variables 𝑥𝑥𝐵𝐵. Early decision variables are selected from experience or sensitivity 
analyses, such that they have the largest influence on the overall system performance and therefore have to be selected 
early in the design process. Late-decision variables have to be selected such that the designer can adjust them accurately 
in a later development phase. The method is sketched in Figure 4 for two design variables.  

 

Figure 4: Solution-compensation space approach. 

Permissible intervals for early decision variables become significantly larger by allowing the late decision variables to 
compensate them in a later phase of the development process, after the early decision variables have been selected as 𝑥𝑥𝐴𝐴

∗. 
The asterisk-subscript is used to indicate that the solution is optimal. Increased flexibility in the selection of early decision 
variables comes at the cost of only being able to determine late decision variables once the early decision variables are 
selected. This makes the design process dependent according to the terminology introduced in the previous section. 

3 Product family design with solution-compensation spaces 

To combine the advantages of product family design using solution-spaces with the advantages of dependent design 
decisions, this paper introduces solution-compensation spaces into the product family optimization framework. While 
(Daub et al., 2020) measures the flexibility as the magnitude of the set of possible design choices, for product family 
design optimization, it is also relevant how many possibilities exist to standardize components between different variants. 
An overview of the method is given in Figure 5 for an arbitrary two-dimensional design problem. 
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Figure 5: Three-level optimization for product family design with solution-compensation spaces. 

The overall problem statement from Eqs. (1)-(3) is divided into three subsequent optimization problems. In the first 
optimization, sketched in Figure 5(a), for each product variant 𝑘𝑘 permissible intervals Ω𝐴𝐴,𝑘𝑘 are computed for the early 
decision variables. 

min
𝛺𝛺𝐴𝐴,𝑘𝑘

−𝜇𝜇�𝛺𝛺𝐴𝐴,𝑘𝑘�       (5) 

subject to:  ∀𝑥𝑥𝐴𝐴,𝑘𝑘 ∈ 𝛺𝛺𝐴𝐴,𝑘𝑘 ∃ 𝑥𝑥𝐵𝐵,𝑘𝑘 such that 𝑔𝑔�𝑒𝑒, 𝑥𝑥𝐴𝐴,𝑘𝑘 , 𝑥𝑥𝐵𝐵,𝑘𝑘� ≤ 0. (6) 

In Eq. (5), the intervals for early-decision variables are selected such that the volume of the space containing good designs 
𝜇𝜇�Ω𝐴𝐴,𝑘𝑘� is maximized. For 𝑥𝑥𝐴𝐴 to be permissible, there has to exist at least one 𝑥𝑥𝐵𝐵 for which the constraints are fulfilled, 
see Eq. (6). For linear constraints, this can be achieved with reasonable effort by eliminating the 𝑥𝑥𝐵𝐵 variables successively 
through projecting them into the Ω𝐴𝐴 space (Vogt et al., 2018a). For nonlinear constraint functions as in the described 
design problem, it becomes more complicated. The simplest approach is brute-force and consists of a nested sampling 
where for each sample of the early decision variables, a separate sampling of the late decision variables is performed. The 
constraints are evaluated for this one 𝑥𝑥𝐴𝐴-sample and all 𝑥𝑥𝐵𝐵-samples which can be aborted if the constraint is fulfilled for 
one of the 𝑥𝑥𝐵𝐵 designs, since this suffices to fulfill Eq. (6). 
The result of the first optimization are permissible intervals 𝛺𝛺𝐴𝐴,𝑘𝑘 for the early decision variables for each product variant. 
This serves as input to the second optimization in Eqs. (7)-(8), and Figure 5(b), to determine optimal design variable values 
𝑥𝑥𝐴𝐴

∗ and assignment scheme 𝜉𝜉, such that the overall cost of the product family 𝐶𝐶𝑃𝑃𝑃𝑃 is minimized. The cost function in Eq. 
(7) also depends on cost parameters 𝑐𝑐.  

min
𝑥𝑥𝐴𝐴,𝑘𝑘

∗ ,𝜉𝜉
𝐶𝐶𝑃𝑃𝑃𝑃�𝑥𝑥𝐴𝐴,𝑘𝑘, 𝜉𝜉, 𝑐𝑐�      (7) 

subject to: 𝑥𝑥𝐴𝐴,𝑘𝑘 ∈ 𝛺𝛺𝐴𝐴,𝑘𝑘      (8) 

Similar to the approach described in Section 2.1, only those commonality possibilities have to be considered that are 
technically feasible, so this problem can be parallelized for each component in 𝑥𝑥𝐴𝐴. However, only the early decision 
variables are considered in this optimization and their optimal commonality is determined. Therefore, this approach only 
works when the early decision variables are selected to have the only (or at least the dominating) effect on the overall cost 
of the product family. Figure 6 is modified from the basic problem statement sketched in Figure 1 by adding sensor 
characteristics 𝛽𝛽 and sensor positionings 𝑝𝑝 separately. Together, they constitute the design variables 𝑥𝑥 = [𝑝𝑝, 𝛽𝛽]T. From 
the description of the problem of perception for automated driving, it can be followed that while the sensor positionings 
have an influence on the perception performance, the characteristics of the sensors drive the costs. Accordingly, the sensor 
characteristics 𝛽𝛽 are selected as early decision variables.  

 

Figure 6: Graphical representation of the problem statement where sensor positionings 𝑝𝑝 and characteristics 𝛽𝛽 are chosen sequentially. 

After selecting optimal values and commonality of the sensor characteristics in the second optimization, the last 
optimization in Figure 5(c) is used to determine optimal values of the dependent parameters or late-decision variables 𝑥𝑥𝐵𝐵. 
Similar to Eq. (5) and for each product variant independently, a set of good designs Ω𝐵𝐵,𝑘𝑘 is computed from Eqs. (9)-(10). 

min
𝛺𝛺𝐵𝐵,𝑘𝑘

−𝜇𝜇�𝛺𝛺𝐵𝐵,𝑘𝑘�       (9) 

subject to:  𝑔𝑔�𝑒𝑒, 𝑥𝑥𝐴𝐴,𝑘𝑘
∗ , 𝑥𝑥𝐵𝐵,𝑘𝑘� ≤ 0     (10) 

Eq. (6) guarantees that the set of good designs Ω𝐵𝐵,𝑘𝑘 is non-empty. If all design variables are selected as early decision 
variables, this approach condenses to the existing approach in Figure 2. If only one variant is considered and the optimal 
value for early decision variables is computed by minimizing a cost function, the basic solution-compensation space 
approach in Figure 4 appears.  

𝑒𝑒 𝑐𝑐
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By fully considering the dependency between sensor characteristics and positions, the flexibility to find the optimal 
commonality pattern in the product family is increased. From a computational point of view, the first and third optimization 
problems require constraint evaluations in the computation of the permissible intervals, which might be expensive. 
However, since commonality is not considered here, the computations for each product variant are completely independent 
and can be parallelized. Combinatorics of the product family is only relevant in the second optimization. Computing 
independent intervals in the first optimization reduces the computational effort, since only feasible combinations have to 
be analyzed for cost-optimality. If the cost model does not contain any terms that depend on more than one component 
simultaneously, this optimization can be done in parallel for the different components. The introduced approach is applied 
to a simple design example in the next section. 

4 Application to an example 

Automated vehicles use various algorithms to fuse information from different sensors and determine locations and 
classifications of relevant objects in their surrounding environment. These algorithms are mostly based on machine-
learning (Bhatt et al., 2020; Wirges et al., 2018) and have to be validated by testing them on a large driven distance and 
number of scenarios (Amersbach and Winner, 2019; Koopman and Wagner, 2018). Furthermore, number, type and 
position of perception sensors have to be decided in an early development phase, when neither the detection algorithms 
nor a detailed vehicle layout exists (Hartstern et al., 2020). Currently, for research and proof-of-concept vehicles, the focus 
lies on ensuring a robust environment perception (Kocic et al., 2018), which leads to a large number of costly perception 
sensors like multi-purpose cameras and lidars (Buchholz et al., 2020). While current research mainly focuses either on the 
performance of sensor fusion and object detection algorithms (Yeong et al., 2021) or on the optimal positioning of specific 
sensors (Hu et al., 2022; Roos et al., 2021) a framework that simultaneously determines the required sensor characteristics 
and sensor positionings for automated vehicles does not exist to the authors’ knowledge. Furthermore, the resulting 
optimization problem to design the perception sensor setup is characterized by a complex and generally non-linear 
evaluation metric, the visibility of relevant objects in the surrounding. 
Consider the example sketched in Figure 7. For two variants of the Ego vehicle 𝑃𝑃1 and 𝑃𝑃2, a camera is designed, which is 
described by the horizontal opening angle of its field of view 𝛽𝛽ℎ as well as the mounting position 𝑝𝑝𝑦𝑦 and orientation 𝛼𝛼𝑧𝑧. 
For a camera setup to be considered good, an oncoming vehicle, sketched in grey, has to be detected. In this paper, it is 
simply checked whether the relevant object is visible to the sensor, i.e., within the field of view of the camera. Visibility 
of the object is a prerequisite for any algorithm to detect the object robustly.  

 

Figure 7: Sketch and dependency graph of the example. 

The scenario description is collected in the design parameters 𝑒𝑒, here it contains the relative position and dimensions of 
both vehicles. The two product variants are members of different product segments. While product variant 𝑃𝑃1 is a small, 
low-cost vehicle that moves at moderate speeds, variant 𝑃𝑃2 is grand and expensive and required to handle larger 
accelerations. The variants are characterized by vehicle dimensions, which are the length from the center of gravity towards 
the front 𝑙𝑙𝐸𝐸 and the width 𝑤𝑤𝐸𝐸 . To account for the different budgets 𝑏𝑏, an additional requirement is added in Figure 7 that 
restricts the horizontal opening angle to some upper bound 𝛽𝛽ℎ,𝑢𝑢𝑢𝑢, see Eq. (11). It would also be possible to account for 
this with variant-specific design space boundaries. 

𝑏𝑏(𝛽𝛽ℎ) = 𝛽𝛽ℎ − 𝛽𝛽ℎ,𝑢𝑢𝑢𝑢 ≤ 0     (11)  

Finally, since variant 𝑃𝑃1 is only required to move at moderate speeds, the lower bound of the visibility constraint 𝑣𝑣𝑙𝑙𝑙𝑙  in 
Eq. (2) can be relaxed compared to the second variant. Values for the parameters describing the product variants are given 
in Table 1. 
  

Ego

Vehicle

Camera
(FoV)

𝑌𝑌

𝑋𝑋
𝑒𝑒 𝛼𝛼𝑧𝑧 𝑝𝑝𝑦 𝛽𝛽ℎ 𝑐𝑐

𝑇𝑇𝑇𝑇𝐹𝐹

min
𝑝𝑝

𝑐𝑐𝑔𝑔
𝑏𝑏

𝑐𝑐𝑔𝑔
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Table 1. Design parameter values and constraint boundaries to describe the product variants. 
 length of Ego 

vehicle, 𝑙𝑙𝐸𝐸 
width of Ego 
vehicle, 𝑤𝑤𝐸𝐸  

upper bound for 
opening angle, 𝛽𝛽ℎ,𝑢𝑢𝑢𝑢  

lower bound for 
visibility, 𝑣𝑣𝑙𝑙𝑙𝑙  

product variant 𝑃𝑃1 1.0 m 1.9 m 40° 0.4 
product variant 𝑃𝑃2 1.2 m 2.2 m 75° 0.99 

 
The design space for the three design variables is given in Table 2. The variable describing the sensor characteristics is 
the horizontal opening angle 𝛽𝛽ℎ of the field of view and this is selected as early decision variable. As mentioned in the 
previous section, the choice of early and late decision variables from the design variables depends on the problem specifics. 
The early decision variables are selected such that they contribute significantly to the optimization objective of the product 
family. For this application, the sensor characteristic, i.e., the horizontal opening angle 𝛽𝛽ℎ of the field of view, dominates 
the costs (𝑥𝑥𝐴𝐴 = 𝛽𝛽ℎ). Subsequently, the commonality of the late decision variables does not, or hardly, influence the overall 
cost of the product family. Since all design variables influence the constraint functions, the late decision variables, here 
the camera position and orientation (𝑥𝑥𝐵𝐵 = 𝑝𝑝 = [𝛼𝛼𝑧𝑧 , 𝑝𝑝𝑦𝑦]), can be used to increase the flexibility to share components 
described by early decision design variables and this might decrease the overall costs. 

Table 2. Design space boundaries and early/late decision for the design variables. 
 camera orientation 𝛼𝛼𝑧𝑧 camera position 𝑝𝑝𝑦𝑦  horizontal opening angle 𝛽𝛽ℎ 

early or late decision late (𝛼𝛼𝑧𝑧 = 𝑥𝑥𝐵𝐵,1) late (𝑝𝑝𝑦𝑦 = 𝑥𝑥𝐵𝐵,2) early (𝛽𝛽ℎ = 𝑥𝑥𝐴𝐴) 
lower bound 𝑥𝑥𝑙𝑙𝑙𝑙  − 𝜋𝜋

4�  − 𝑤𝑤𝐸𝐸
2�  m 0° 

lower bound 𝑥𝑥𝑢𝑢𝑢𝑢 𝜋𝜋
4�  𝑤𝑤𝐸𝐸

2�  m 80° 
 
Figure 8(a) shows the results of the first optimization step for both vehicle variants, the solution-compensation space 
according to Eqs. (5)-(6). Results of a classical box-shaped-solution space with no differentiation between early and late 
decision variables is plotted in Figure 8(b) for comparison. Each design consists of three design variables and a colour 
property indicates whether this combination of design variables is considered good (green), the visibility constraint (red) 
or the budget constraint (blue) are violated. To improve clarity, the four-dimensional results are projected onto three-
dimensional plots (two design variables and colour property). This is achieved by sampling over the complete design space 
for the two design variables of the plot, while the other design variables are sampled within their permissible intervals (not 
over the entire design space). The permissible intervals for the first variant are sketched in black, for the second variant in 
blue, and both solutions are pictured together in the bottom row of Figure 8. For the presented solution-compensation 
space approach, the result, to be very specific, is only the plot of the two intervals over the early decision variable 𝛽𝛽ℎ in 
the bottom row of Figure 8(a). Permissible, independent intervals of the positioning variables (late decision, 𝑝𝑝 = [𝑝𝑝𝑦𝑦 , 𝛼𝛼𝑧𝑧]) 
are computed later in the third optimization. However, to be able to compare the results to the classical solution-space 
approach in the projections, the intervals of the late-decision variables are selected as maximal and minimal values that 
fulfil the compensation constraints, Eq. (6), to achieve the plots in the top and middle row in Figure 8(a). 
While this simple example leads to large solution spaces for both approaches, the solution-compensation space approach 
leads to overlapping intervals for 𝛽𝛽ℎ in Figure 8(a), which means a shared sensor can be selected. For each permissible 
opening angle in those intervals, Eq. (6) ensured that at least one combination for the sensor positionings (late decision 
variables 𝑝𝑝 = [𝑝𝑝𝑦𝑦 , 𝛼𝛼𝑧𝑧]) exists where the requirements are fulfilled. However, the selection of the late decision variables 
now depends on the specific selection of 𝛽𝛽ℎ. A larger flexibility in the selection of the opening angle, that drives the costs 
of the product family, is compensated by decreased flexibility in the selection of the positionings. This can also be seen in 
the first two rows of Figure 8(a). While the interval over 𝛽𝛽ℎ (early decision) is maximized, the box also contains designs 
where the requirements are not fulfilled for certain positionings. The box-shaped solution spaces in Figure 8(b), combined 
for both product variants in the bottom row, ensures that each of the three design variables (𝑥𝑥 = [𝛽𝛽ℎ, 𝑝𝑝𝑦𝑦 , 𝛼𝛼𝑧𝑧]) can be 
selected independently within its permissible interval and the constraints will be fulfilled. However, by trying to find the 
solution-space box with the overall largest volume in the good designs, the classical algorithm leads to two boxes that do 
not overlap for 𝛽𝛽ℎ and a common camera for both product variants cannot be found without compensation. 
In the second optimization, the optimal assignment scheme is computed that minimizes the cost of the product family 
following Eqs. (7)-(8). A simple cost model is assumed for the cost of the product family (Ehrlenspiel et al., 2020), that 
consists of two parts. The first part, design specific costs, increases with larger values for the opening angles and the 
second part increases with the number of component variants. Since the lower boundaries for both variants, resulting from 
the first optimization, are close, a common sensor is selected with an opening angle of 𝛽𝛽ℎ,𝑃𝑃1

∗ = 𝛽𝛽ℎ,𝑃𝑃2
∗ = 16°, which is the 

lower boundary of the permissible interval of 𝑃𝑃2 in Figure 8(a). The commonality pattern reads 𝜁𝜁𝛽𝛽ℎ
𝑃𝑃1↔𝑃𝑃2 = 1 (component 

is shared) and the assignment scheme 𝜉𝜉𝑃𝑃1𝛽𝛽ℎ = 𝜉𝜉𝑃𝑃2𝛽𝛽ℎ = 1 (both share the same component, with index 1). 
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Figure 8: (a) Solution-compensation spaces and (b) box-shaped solution spaces for variants 𝑃𝑃1 (top row, black boxes) and 𝑃𝑃2 (middle 
row, blue boxes). Permissible intervals for both variants (bottom row). 

After selecting the optimal sensor characteristics, permissible intervals for the positioning design variables 𝑝𝑝 = �𝑝𝑝𝑦𝑦 , 𝛼𝛼𝑧𝑧�𝑇𝑇
 

are computed from Eqs. (9)-(10) for both variants individually. Resulting solution spaces are given in Figure 9, where, 
similarly to Figure 8, green dots indicate good designs and red dots visibility constraint violations. The optimal values can 
be selected in a later development phase according to secondary criteria, separately for both variables if a box-shaped 
solution space is computed to decouple them. 

   

Figure 9: Solution spaces for the late decision variables for variant 𝑃𝑃1 (left) and 𝑃𝑃2 (right). 

Even though the selected example is very simple, only two constraints are considered, and the product variants are only 
slightly different, the advantages of the proposed method can be seen. Larger permissible intervals for the sensor 
characteristics in the first optimization leads to greater flexibility to select a cost-optimal product family in the second 
step. To reduce the computational effort, only combinations are considered where the constraints are fulfilled. Permissible 
values for sensor positions are computed in the third optimization step, where the constraint formulation in the first 
optimization guarantees that at least one good position exists.  

5 Conclusion and Outlook 

The motivating problem was described as finding the setup of perception sensors for a product family of automated 
vehicles, where the cost is minimized and the visibility of the relevant objects in the surrounding is guaranteed. This is 
characterized by a large number of design variables and constraints. Nonlinear constraint functions and combinatorics how 
components are shared between product variants can make the optimization problem prohibitively expensive. This paper 
introduced an approach to seek the optimal design of a product family utilizing solution-compensation spaces. A 
previously presented approach based on classical solution spaces computes permissible intervals for all design variable of 
each product variant. Components can be shared between product variants where the intervals overlap. The disadvantage 
of this approach is that for high-dimensional problems, the intervals become very small, which in turn restricts the 

(a) (b)
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combination possibilities and optimality in the product family. By (re-)introducing a dependency between sensor 
characteristics and positions, the flexibility to select the former is increased. In the solution-compensation space approach, 
larger permissible intervals for early decision variables are achieved by allowing late decision variables to compensate 
different choices. However, this comes at additional costs in the first optimization step to find the permissible intervals for 
the design variables describing the sensor characteristics, such that at least one permissible solution exists for the (later) 
positionings. 
An important next step is to analyse the performance of the proposed method by applying it to a more complex example. 
Flexibility when selecting the components, but also the quality of the overall result has to be analysed and contrasted with 
computational effort. An efficient computation of the solution-compensation spaces will be crucial, which requires further 
investigation. The basic idea to utilise the dependency between sensor characteristics and sensor positionings to increase 
the flexibility in the product family could also be beneficial in a product family optimization method that is not based on 
solution spaces. Finally, for the method to be applicable to a larger number of design problems, it should be extended to 
module-based product families. 

References 

Amersbach, C., Winner, H., 2019. Defining Required and Feasible Test Coverage for Scenario-Based Validation of Highly Automated 
Vehicles, in: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, Auckland, New Zealand, pp. 425–430. 
https://doi.org/10.1109/ITSC.2019.8917534 
Bhatt, D., Bansal, D., Gupta, G., Lee, H., Jatavallabhula, K.M., Paull, L., 2020. Probabilistic Object Detection:  Strengths, Weaknesses, 
Opportunities, in: Workshop on AI for Autonomous Driving, the 37 Th International Conference on Machine Learning. Vienna, Austria, 
p. 7. 
Bock, F., Siegl, S., Bazan, P., Buchholz, P., German, R., 2018. Reliability and test effort analysis of multi-sensor driver assistance 
systems. Journal of Systems Architecture 85–86, 1–13. https://doi.org/10.1016/j.sysarc.2018.01.006 
Broggi, A., Buzzoni, M., Debattisti, S., Grisleri, P., Laghi, M.C., Medici, P., Versari, P., 2013. Extensive Tests of Autonomous Driving 
Technologies. IEEE Trans. Intell. Transport. Syst. 14, 1403–1415. https://doi.org/10.1109/TITS.2013.2262331 
Buchholz, M., Gies, F., Danzer, A., Henning, M., Hermann, C., Herzog, M., Horn, M., Schoen, M., Rexin, N., Dietmayer, K., 2020. 
Automation of the UNICARagil vehicles, in: 29th Aachen Colloquium Sustainable Mobility. pp. 1531--1560. 
Daub, M., W, F., Zimmermann, M., 2020. Optimizing Distributed Design Processes for Flexibility and Cost, in: DS 103: Proceedings 
of the 22nd International DSM Conference (DSM 2020). The Design Society, MIT, Cambridge, Massachusetts, pp. 10–10. 
https://doi.org/10.35199/dsm2020.2 
Ehrlenspiel, K., Kiewert, A., Lindemann, U., Mörtl, M., 2020. Kostengünstig Entwickeln und Konstruieren: Kostenmanagement bei 
der integrierten Produktentwicklung. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62591-0 
Eichstetter, M., Müller, S., Zimmermann, M., 2015. Product Family Design with Solution Spaces. Journal of Mechanical Design 137, 
121401. https://doi.org/10.1115/1.4031637 
Fujita, K., Yoshida, H., 2004. Product Variety Optimization Simultaneously Designing Module Combination and Module Attributes. 
Concurrent Engineering 12, 105–118. https://doi.org/10.1177/1063293X04044758 
Funk, M., Jautze, M., Strohe, M., Zimmermann, M., 2019. Sequential Updating of Quantitative Requirements for Increased Flexibility 
in Robust Systems Design. Proc. Int. Conf. Eng. Des. 1, 3531–3540. https://doi.org/10.1017/dsi.2019.360 
Gogri, M., Hartstern, M., Stork, W., Winsel, T., 2020. A Methodology to Determine Test Scenarios for Sensor Constellation 
Evaluations, in: 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS). IEEE, Victoria, BC, Canada, pp. 1–5. 
https://doi.org/10.1109/CAVS51000.2020.9334603 
Hartstern, M., Rack, V., Stork, W., 2020. Conceptual Design of Automotive Sensor Systems: Analyzing the impact of different sensor 
positions on surround-view coverage, in: 2020 IEEE SENSORS. IEEE, Rotterdam, Netherlands, pp. 1–4. 
https://doi.org/10.1109/SENSORS47125.2020.9278638 
Hu, H., Liu, Z., Chitlangia, S., Agnihotri, A., Zhao, D., 2022. Investigating the Impact of Multi-LiDAR Placement on Object Detection 
for Autonomous Driving, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2550--2559. 
Jackson, D., Richmond, V., Wang, M., Chow, J., Guajardo, U., Kong, S., Campos, S., Litt, G., Arechiga, N., 2021. Certified Control: 
An Architecture for Verifiable Safety of Autonomous Vehicles. arXiv:2104.06178 [cs, eess]. 
Khatab, E., Onsy, A., Abouelfarag, A., 2022. Evaluation of 3D Vulnerable Objects’ Detection Using a Multi-Sensors System for 
Autonomous Vehicles. Sensors 22, 1663. https://doi.org/10.3390/s22041663 
Kocic, J., Jovicic, N., Drndarevic, V., 2018. Sensors and Sensor Fusion in Autonomous Vehicles, in: 2018 26th Telecommunications 
Forum (TELFOR). IEEE, Belgrade, pp. 420–425. https://doi.org/10.1109/TELFOR.2018.8612054 
Koopman, P., Wagner, M., 2018. Toward a Framework for Highly Automated Vehicle Safety Validation. Presented at the WCX World 
Congress Experience, pp. 2018-01–1071. https://doi.org/10.4271/2018-01-1071 
Koopman, P., Wagner, M., 2016. Challenges in Autonomous Vehicle Testing and Validation. SAE Int. J. Trans. Safety 4, 15–24. 
https://doi.org/10.4271/2016-01-0128 
Lambert, J., Carballo, A., Cano, A.M., Narksri, P., Wong, D., Takeuchi, E., Takeda, K., 2020. Performance Analysis of 10 Models of 
3D LiDARs for Automated Driving. IEEE Access 8, 131699–131722. https://doi.org/10.1109/ACCESS.2020.3009680 



Flexibility despite dependencies and constraints: Product family design with solution-compensation spaces 

DSM 2023 132 

Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (Eds.), 2016. Autonomous Driving. Springer Berlin Heidelberg, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-662-48847-8 
Ponn, T., Kroeger, T., Diermeyer, F., 2020. Identification and Explanation of Challenging Conditions for Camera-Based Object 
Detection of Automated Vehicles. Sensors 20, 3699. https://doi.org/10.3390/s20133699 
Roos, S., Volkel, T., Schmidt, J., Ewecker, L., Stork, W., 2021. A Framework for Simulative Evaluation and Optimization of Point 
Cloud-Based Automotive Sensor Sets, in: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 
Indianapolis, IN, USA, pp. 3231–3237. https://doi.org/10.1109/ITSC48978.2021.9564871 
Rötzer, S., Thoma, D., Zimmermann, M., 2020. Cost Optimization of Product Families using Solution Spaces. Proc. Des. Soc.: Des. 
Conf. 1, 1087–1094. https://doi.org/10.1017/dsd.2020.178 
Simpson, T.W., Maier, J.R., Mistree, F., 2001. Product platform design: method and application. Res Eng Design 13, 2–22. 
https://doi.org/10.1007/s001630100002 
Vogt, M.E., Duddeck, F., Harbrecht, H., Stutz, F., Wahle, M., Zimmermann, M., 2018a. Computing solution‐compensation spaces using 
an enhanced Fourier‐Motzkin algorithm. Proc. Appl. Math. Mech. 18. https://doi.org/10.1002/pamm.201800103 
Vogt, M.E., Duddeck, F., Wahle, M., Zimmermann, M., 2018b. Optimizing tolerance to uncertainty in systems design with early- and 
late-decision variables. IMA Journal of Management Mathematics 30, 269–280. https://doi.org/10.1093/imaman/dpy003 
Wirges, S., Fischer, T., Stiller, C., Frias, J.B., 2018. Object Detection and Classification in Occupancy Grid Maps Using Deep 
Convolutional Networks, in: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, Maui, HI, pp. 
3530–3535. https://doi.org/10.1109/ITSC.2018.8569433 
Yeong, D.J., Velasco-Hernandez, G., Barry, J., Walsh, J., 2021. Sensor and Sensor Fusion Technology in Autonomous Vehicles: A 
Review. Sensors 21, 2140. https://doi.org/10.3390/s21062140 
Zimmermann, M., von Hoessle, J.E., 2013. Computing solution spaces for robust design. Int. J. Numer. Meth. Engng 94, 290–307. 
https://doi.org/10.1002/nme.4450 
 
Contact: N. Barthelmes, Laboratory for Product Development and Lightweight Design, TUM School of Engineering 
and Design, Faculty of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, 
Germany, nicola.barthelmes@tum.de, zimmermann@tum.de. 

mailto:nicola.barthelmes@tum.de
mailto:zimmermann@tum.de

