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Abstract 

Optimizing global material flow and resource consumption is a 
key goal of the circular economy.  Regarding production, the 
circular economy relies on the targeted reprocessing of used 
products, requiring extensive product data for informed 
decisions. However, the available data regarding distinct product 
generations and variants is fluctuating, and necessary data can 
be scattered or incompatible. The problem is that a 
comprehensive data processing method to deal with the 
mentioned requirements is missing. Therefore, a concept for 
designing data processing pipelines is presented and 
demonstrated in a circular factory for angle grinders. These 
pipelines focus on function prediction tasks and showcase the 
benefits of adapting pipeline compositions, drawing from existing 
data analysis. 
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1. Introduction 

One aim of the circular economy is the optimization of the global material flow and resource 
consumption by efficiently and selectively reprocessing used products. In a circular economy, 
the value retention of products through remanufacturing plays an important role [1]. As circular 
factories produce new products from used subsystems and components of different 
generations and variants, a linear production process is not feasible. Deciding which 
subsystems of the products are fit to be reprocessed is particularly challenging due to the 
uncertain conditions of the returned products. Regarding design research, approaches to 
ensure quality standards of new products in a circular economy are still missing [2].  

During the reprocessing of a single product, the circular factory needs to make a variety of 
decisions. To generate a new product from used subsystems and components, it needs to 
decide, how to disassemble, reprocess and combine components, when to recycle 
components, and when to add new components from linear production into circular production. 
For reliable decisions in a circular factory, a large amount of data from the area of product 
development is needed, both in diagnostics of the returning products and in predicting the 
reliability of reprocessed products. Various data on the product embodiment as well as on its 
functions and behavior must be collected, combined, and evaluated [3]. However, the data is 
available in different formats from versatile sources and is often scattered or incompatible [4]. 
To handle it, a wide variety of algorithms and models is needed. At the, sometimes non-present 
or insufficient, intersections of these elements, difficulties and losses occur [5]. Approaches 
like co-simulations [6] are able to link different models, however, they are limited to quantitative, 
computer-based models, and the data handleable with them. Decision-making in the circular 
factory is further complicated by the fluctuating availability of data regarding distinct products 
and product generations. One cannot rely on the availability of such amounts of data, which 
are required by certain data-driven prediction methods. Similarly, the reprocessing of used 
products requires specific design knowledge about function-relevant design parameters and 
their interactions. This can be achieved by extensive explorative investigation of linear and 
circular products. The specific design knowledge needs to be considered in decision-making 
and applied at the product instance level. 

There are several numerical and statistical models that address decision-making in 
production planning regarding disassembly and remanufacturing [7]. Despite accounting for 
the mentioned uncertainty, the models operate at a higher level and do not consider the 
product itself in detail as necessary for reprocessing in the circular factory. On the other hand, 
some models support sustainable product development, primarily through life cycle 
assessment, but neglect the control of reprocessing [8]. Consequently, no reliable information 
basis for decision-making in the circular factory is available as of right now. To make it worse, 
the product instances returning from the market have seen very different lives regarding 
application and runtime, so they are worn down individually. In this context, tolerance-focused 
methods exist [9] as well as first approaches targeting product functionality [10]. However, 
these approaches do not consider the wear of used products, as they are concerned with the 
scatter of parameters caused by linearly manufacturing new products. Notably, product 
components from different used products may be combined to remanufacture viable new 
products. Thus, the optimal material flow for components does not only depend on a single 
product instance, but on the whole set of available product instances and their components. 

In summary, the problem is that a comprehensive data processing method to deal with the 
aforementioned requirements of the circular economy is missing. This leads to the research 
question of this paper: 

 
How can product data be combined and processed to prepare informed decisions in the 

circular factory with the specific boundary condition of variable products returning from the 
market in unknown conditions? 
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2. Background on Functional Models in Circular Factories 

2.1. Product Handling in the Circular Factory 

At first a used product returns from the market and enters the circular factory. The precise 
product generation and variant are not known beforehand. Similarly, overall condition differs 
significantly, due to the individual wear of each product instance. For example, an angle grinder 
could have been used at a dusty construction site with medium loads and short working cycles 
or at a pressure vessel manufacturer, where it runs long working cycles under high loads but 
in a less aggressive environment. Depending on the exerted operation, different components 
are more or less likely to be affected by wear. This renders the requirement for thorough 
inspection and very versatile remanufacturing processes. Upon entering the circular factory, 
an initial function test of the returned product is a crucial first step. The product is considered 
as a complete unit in this first inspection and the degree of function fulfillment is measured. 
Latter can include qualitative characteristics such as a closed power connection from the 
electric motor to the tool and quantitative information such as vibration measurements.  

With the initial inspection, a process of iterative disassembly and diagnosis of the used 
products and subsystems begins. In this process, each of the following steps depends on the 
findings and decisions of the current step. With a functional model, the degree of functional 
fulfillment is related to the function-relevant design parameters. For instance, if one single 
component has been found to compromise the entire product, the disassembly and 
measurement should focus on its specific subsystem. In most cases, however, multiple 
subsystems will be compromised and numerous operations are required. Additionally, the 
disassembled components of one system are not necessarily remanufactured to form a single 
new product. Instead, corresponding subsystems may be combined crosswise from different 
product instances to achieve higher degrees of function fulfillment.  

The final decision on reprocessing and recombination is based on the fulfillment of the 
functional requirements. Therefore, the prediction of the degree of function fulfillment via the 
functional model is a major challenge within the circular factory. Diverse prediction approaches 
of different natures and requirements, both expert-driven and data-driven, are employed to 
enable the described decisions within the circular factory. The foundations of such prediction 
models regarding knowledge sources, products, and measurement data vary broadly. In our 
work, we focus on how the provided data, knowledge, and tools can be combined to achieve 
reliable predictions. 

  
Figure 1: Illustration of the inspection and remanufacturing process in a circular factory for angle grinders. 

Contains graphics from KIT wbk/Fischmann. 
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2.2. Functional Model  

As mentioned above, the circular factory makes use of a functional model to provide reliable 
information bases for disassembly and remanufacturing decisions. Consequently, it is 
necessary to identify the function-relevant design parameters and their relation to the product 
function. Regarding the angle grinder, the product function can be expressed through the 
vibration. A function model, in this case, maps the characteristics of the design parameters to 
the degree of function fulfillment. Thus, the model takes on two different roles in the circular 
factory. On the one hand, the degree of function fulfillment can be used to infer the 
characteristics of the function-relevant design parameters. This information is crucial for the 
iterative disassembly and diagnosis of used products at the beginning of the circular process. 
On the other hand, the functional model enables a prediction of the product function based on 
the characteristics of the design parameters. This allows different recombination variants of 
subsystems and components to be evaluated. By comparing the output with the functional 
requirements of the new product, the desired functionality can be theoretically ensured. Figure 
1 illustrates the role of the functional model within the product handling process in the circular 
factory for angle grinders. 
Regarding the actual structure of the functional model, different approaches can be used to 
perform the prediction task. Expert-driven models and data-driven models are particularly 
worth mentioning here. These approaches can either be used individually or in combination. 
The outline of their characteristics and examples will be shown in the following, emphasizing 
the importance of both model types.  

Expert-Driven Models: Expert-driven models are manually constructed and tuned to 
contain external product knowledge, e.g., from conceptualization and testing. These models 
are white box models, in which physical facts, measurements, hypotheses and product 
knowledge may be modeled explicitly. As a result, they are formulated for a specific product 
generation and variant and their design requires manual effort and specific empirical product 
data. 

The expert-driven approach of the functional model links qualitative and quantitative models 
by formulating design hypotheses [11]. Qualitative models are used to identify the function-
relevant design parameters through the systematic analysis of the product. The Contact and 
Channel Approach [12] can be used to trace the chain of effects of individual design 
parameters in the system. The Design-Structure-Matrix according to [13] can provide 
information about the influence of the design parameters on the system behavior. This allows 
for the formulation of design hypotheses that link, for example, the geometry of the tooth flank 
of the bevel gear with the vibration of the angle grinder. Based on the design hypotheses, a 
targeted quantification of these design-function relationships is possible using empirical and 
analytical approaches. This process results in the creation of regression models for the 
relationship between the function-relevant design parameters and the degree of function 
fulfillment in a predefined parameter range.  

Data-driven Models: The product data gathered during the operation of the circular factory 
facilitates the employment of purely data-driven approaches, as contrary to expert-driven 
approaches. Data-driven models rely exclusively on computational intelligence and machine 
learning methods to model physical systems using available data [14]. As the amount of 
historical instance-specific product data increases, predictions of machine learning and deep 
learning models are expected to grow more reliable. Thus, it is possible for data-driven 
approaches and black box models to enhance the expert-driven white box models or identify 
relations that are not accessible to the latter.  

After the circular factory has been in operation for some time, the question arises of which 
approach of the functional model should be consulted, to obtain the most accurate predictions. 
Indeed, combinations of multiple predictions in a model ensemble may even further increase 
prediction accuracy and reliability. 
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3. Combining Expert- and Data-driven Models to Data Processing Pipelines 

Depending on the circumstances, one should opt for a different model or even a 
combination of such. In this paper, we present a concept for the design of data processing 
pipelines for product data in a circular factory for angle grinders. As previously explained, 
multiple decisions regarding subsystem and component treatment have to be made for each 
product instance entering the circular factory. We propose the usage of data processing 
pipelines to exploit available product data, as well as existing models and data processing 
algorithms to produce predictions and thus support decision-making in the circular factory. In 
the scope of our work, we use the term data processing pipeline to describe a series of data-
based operations targeted at predicting a specific condition or value. 

Thereby, contrary to most problems in data science or automated machine learning 
(AutoML), the input data is not fixed beforehand. Instead, a pool of different data sources, from 
which one or multiple may be selected, is employed. This necessitates the availability of not 
only a syntactic but also a semantic description of these data. Furthermore, this requirement 
can be extended to algorithm descriptions analogously. As an essential step, the unified and 
comprehensive descriptions enable crucial decisions in automated pipeline construction, e.g., 
which algorithms and data are compatible, or which data can be used interchangeably. 

In many AutoML approaches focusing on the automated selection of data processing 
models, the structure and grammar of the data processing pipelines are predefined and not 
easily customizable by the user [15]. This is not the case for the Open-Source solution CLS-
Luigi, which is a use-case agnostic tool for the efficient optimization of fixed-input data 
processing pipelines [16]. CLS-Luigi enables the user to model a pipeline template and provide 
viable algorithm choices. Based on the template, CLS-Luigi exhaustively searches the 
algorithm pipeline yielding optimal results on the provided data. CLS-Luigi adapts the well-
established synthesis framework, the combinatory logic synthesizer (CLS) [17], to 
automatically generate all pipeline variants based on this repository. CLS has already proven 
effective in many engineering applications such as design spaces of motion planning [18] and 
simulation models in warehousing and manufacturing [19].  

The synthesized pipelines are implemented in Luigi, a popular Python library for building 
and executing data pipelines of batch jobs. Using Luigi pipelines is highly advantageous 
because it is agnostic to the type of computation; users can construct pipelines with algorithms 
from different fields, such as machine learning, combinatorial optimization, or physics. 
Moreover, Luigi caches intermediate pipeline outputs and avoids recomputing identical sub-
pipelines with existing results [20]. 

CLS-Luigi offers a programming interface that closely resembles regular Luigi code, 
encapsulating type-theory and logic-related parts of CLS in a form that analytics experts can 
conveniently use. By applying combinatory logic, CLS efficiently synthesizes all feasible 
pipeline variants and returns a regular tree grammar that can be used to search the space 
resulting pipelines [17]. 

4. Conceptualization of Data Processing Pipelines in the Circular Factory  

In the circular factory, various prediction tasks arise during the reprocessing of used 
products. This includes instance-specific error classifications during inspection and prediction 
of product function and reliability before reassembly. Figure 2 shows the build-up of different 
pipeline variants dealing with these tasks. Therefore, information from the product design 
phase is combined with information obtained during the runtime of the circular factory. While 
the product design is mainly expert-driven, the factory operation often relies on data-driven 
approaches. The individual components of the pipeline draw from the three central elements 
– models and algorithms, knowledge, and data. 
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Figure 2: Build-up of data processing pipelines for various prediction tasks in the circular factory.  

 In the following, we present concrete application examples for data processing pipelines 
within the circular factory for angle grinders. These examples focus on the gearbox and map 
the two roles of the functional model mentioned above and shown in Figure 1. Subsequently, 
we carry out the actual construction of specific processing pipelines taking into account 
different data sources. 

4.1. Application Examples 

The first example addresses the initial inspection and disassembly of an angle grinder for 
which the data processing pipeline performs an error classification. In the second example the 
processing pipeline results in the vibration prediction to evaluate the reassembly of the 
gearbox. 

Initial Inspection and Error Diagnosis: When used products return from the market to the 
circular factory, an initial functional test is carried out. The functional model then uses the data 
to identify relevant parameters for the inspection of the unique used product. A number of 
possible error cases exist, which must be identified. For example, the presence of specific 
frequency bands can indicate a broken tooth on the bevel gear. The used product is then 
disassembled and diagnosed in an iterative process that is always adapted to the current 
condition of the subsystems and their components. If there is no tooth breakage, the gear is 
geometrically measured to identify any damage to the tooths. Optical detection using laser 
scanning results in coarsely resolved point clouds, while the CT scan generates finely resolved 
3D objects. Depending on the wear of the tooth flanks, a subsequent material characterization 
provides information about any crack formations.  

Additional knowledge from the preceding product design process can be employed in the 
product inspection. For instance, the CAD model enables the identification of geometric 
deviations in the tooth flank due to wear. Furthermore, finite element calculations can be used 
to predict the structural integrity of the inspected tooth root under representative load profiles.  

Based on the results, decisions regarding the disassembly and reprocessing of the gears 
are taken. For example, a bevel gear with a broken tooth is sorted out directly after 
disassembly. In this case, recycling of the bevel gear seems to be the right approach. Bevel 
gears with heavily worn tooth geometry can be remanufactured using subtractive-additive 
manufacturing processes, while gears with slight wear may only require reconditioning.  
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One rather simple and easy-to-understand prediction task, to which we aim to apply data 
processing pipelines, is the prediction of the specific error case „tooth pitting“ of the bevel gear. 
In this case, we expect data processing pipelines to output a numeric value indicating the 
presence of the error class, possibly combined with uncertainty information required for 
insightful decision-making in the circular factory.  

Gearbox Assembly and Vibration Prediction: At the gearbox subsystem, the evaluation 
of different combinations of the bevel gear and bevel pinion before reassembly is of central 
importance. This requires the combination of the data and uncertainties of both components. 
In this case, a data processing pipeline targeting an output value indicating the vibration as the 
product function can be designed. Once again, the data processing pipeline is based on the 
same comprehensive descriptions of data, knowledge, and models and algorithms available 
in the circular factory. However, for this prediction task, the utilization of other data sources 
and algorithms will very likely be required to achieve high prediction accuracies. After 
prediction, the vibration values of the possible combinations are compared with each other and 
the functional requirement of the product. Concerning the recombination into a new product, 
the bevel pinion can, for example, come from another used angle grinder or be a linearly 
manufactured new part that exactly matches the defined specifications of the product at hand.  

4.2. Data Processing Pipeline Examples 

For the actual data processing pipeline, the first application example described in section 
4.1, the prediction of the error case „tooth pitting“, will be considered. To communicate the idea 
of different viable data processing pipelines, we will outline three (manually constructed) data 
processing pipelines, which tackle the described prediction task. One is fully based on expert-
driven models, the second is exclusively data-driven and the third shows a hybrid approach. 

In an expert-driven process, the decisions are based on specific design knowledge that has 
to be gathered beforehand. This regards to the analysis of the frequency bands and the 
geometrical deviation of the tooth flanks from the CAD model. Figure 2 (A) depicts the 
described data processing pipeline. Data inputs are parameter measurements performed on 
the specific product instance: Vibration data and 3D surface measurement of the bevel gear. 
Additionally, the CAD model of the bevel gear, i.e., external knowledge from product design, 
is incorporated. A simple bandpass filter and thresholding are initially applied to the instance 
vibration data. Subsequently, if pitting is suspected, a deviation computation is performed to 
measure the divergence from the original product shape. If a sufficient deviation exists, the 
error is classified as „tooth pitting“. This data processing pipeline operates purely on product 
knowledge, models from the design phase and instance measurement data – no historical data 
about the product is required. 

In contrast to the previously described data processing pipeline, two pipeline versions that 
incorporate data-driven approaches and employ historic product measurement data were 
manually constructed.  Figure 2 (B) and (C) illustrate these pipeline examples. In version (B) a 
pipeline relying exclusively on data-driven algorithms is illustrated. This data processing 
pipeline utilizes instance measurement data and historic instance data. Employing the 
historical data, a learning-based algorithm is fitted to predict the presence of pitting based on 
vibration and noise level measurements. This pipeline example classifies without requiring the 
conduction of costly 3D measurements. Version (C) in Figure 2 illustrates a hybrid pipeline 
employing both expert-driven and data-driven methods. The pipeline is very similar to the first 
version (A), but instead of comparing 3D surface measurements to CAD data and using an 
expert-driven prediction method, a data-driven approach is used to predict the error „tooth 
pitting“ based on vibration and 3D surface measurements. Again, historic instance 
measurement data is utilized as training data for the black box prediction model. 
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Figure 3: Exemplary data processing pipelines for the diagnosis of the error case "tooth pitting ". 

As explained above, we do not limit the input data of the corresponding prediction pipeline 
to a specific set of data, e.g., to the vibration data measured during the initial inspection, or to 
the product instance measurement data in general. Instead, we allow, and intend, a 
synthesized data processing pipeline to feed on any available data, which it renders beneficial 
for the prediction task. Summarizing the above, three completely different data processing 
pipelines with identical prediction objectives were introduced. At the same time, they all might 
be viable choices to predict the presence of the error case „tooth pitting“ for a given product 
instance. 

5. Discussion 
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question “How can product data be combined and processed to prepare informed decisions in 
the circular factory with the specific boundary condition of variable products returning from the 
market in unknown conditions?” They are manually constructed examples for illustration of the 
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CLS-Luigi over many other AutoML approaches regarding the structure and grammar of data 
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incorporate semantic information. We intend to exploit the exceptional pipeline synthesis 
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contained. The assignment to either the product or product instance and the interchangeability 
of data should be highlighted. Similarly, algorithm descriptions must contain analogous 
information on the operational level and its corresponding input and output. We aim to 
encapsulate the relevant semantic data and algorithm information in a joint concise ontology. 
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This ontology can then be used to determine the compatibility of data sources and algorithms, 
e.g., to decide whether a given algorithm may use a specific data source as input, or whether 
two different algorithms can be applied consecutively. 

To select the best possible pipeline version, some means of evaluating specific pipeline 
compositions are necessary. This, yet again, requires either the presence of adequate data 
within the circular factory, or human assistance. In our vision for the implementation of data 
processing pipeline synthesis, human assistance is requested in the early stages of factory 
operation, when no adequate evaluation data can be extracted. In later stages, evaluation data 
in the form of instance-prediction pairs are available. Equally appealing, we aim to investigate 
transfer learning approaches to adopt pipeline construction results from earlier products to new 
product generations. 

The biggest limitation of the presented work is, in our opinion, its early stage of 
conceptualization and the lack of quantitative experimental results. An adequate data basis is 
highly complex and not readily available, but required to perform the necessary experiments 
and evaluations. We will address this issue in future research. A more fundamental limitation 
of the concept is caused by the high requirements regarding data and algorithm description. 
In a complex system like the circular factory, where numerous data sources and types are to 
be expected and many different models and algorithms are prospectively applicable, the effort 
of constructing a concise information ontology is associated with great effort. 

6. Conclusion and Outlook 

In this paper, we presented problems and challenges relevant to the implementation of a 
circular factory that reprocesses used products in order to return them to the market. Within 
such a process, which includes product disassembly, inspection, reprocessing and assembly, 
a large number of interdependent decisions need to be taken. An adequate data basis for such 
decisions is not readily available. While numerous different data sources are applicable, the 
amount of available data fluctuates and problems regarding data formats, compatibility and 
interpretability exist. We propose the implementation and application of synthesized and 
optimized data processing pipelines to provide adequate decision support. The operational 
processes within the circular factory were analyzed, highlighting exemplary applications for the 
advantageous use of data processing pipelines. We presented manually constructed data 
processing pipelines to fulfill the corresponding prediction tasks, taking into account different 
data sources and algorithms. Lastly, the requirements for enabling automated data processing 
pipeline construction were outlined, based on a concise information ontology containing 
structural and semantic information on all available data sources, data processing methods, 
and algorithms 

In future work, we intend to construct an exemplary information ontology representing 
relevant parts of the circular factory’s processes. Based on this ontology and the open-source 
tool CLS-Luigi, we will implement a solution for automated pipeline synthesis in the context of 
the circular factory for angle grinders. For a few relevant examples within this environment, we 
will examine and evaluate the automatically synthesized algorithm pipelines. Another 
interesting direction for future research is the formulation of a procedure model for the 
implementation of automated data processing pipelines throughout the circular factory, based 
on the pipeline synthesis results for selected application examples.  
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