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Abstract 

A variety of possible technical concepts can be considered for an 
electromechanical drivetrain. To evaluate them, for each a 
simulation of the physical behavior, lifetime or efficiency must be 
performed. However, the required modelling can be very time-
consuming. This article describes a method to reduce manual 
modelling efforts, allowing the simulative evaluation of large 
technical solution spaces. Therefore, a modelling standardization 
for variant model networks is presented, which can be easily 
configured to simulate specific concepts and purposes. In 
addition, an approach for the automated identification, 
configuration and execution of concept- and purpose-related 
models is introduced. The method is implemented in MATLAB®, 
Simulink® and System Composer® and validated using the 
example of the electromechanical drivetrain of a passenger car. 
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1. Introduction 

The electrification of mechanical drivetrains can significantly reduce the carbon emissions 
of vehicles and mobile machinery.  In view of the EU's planned ban on the sale of new petrol 
and diesel vehicles from 2035 [1], a rapid switch to electromechanical drivetrains in various 
mobile applications is imminent. During the development process of electromechanical 
drivetrains, many different concepts can be created and investigated. These can differ in their 
functional architecture (e.g.: purely electrical energy storage or storage of hydrogen with 
subsequent conversions into electrical energy) or in the used technical solutions (e.g.: 
Synchronous Motor or Asynchronous Motor). A solution space with hundreds of possible 
concepts can be considered. Each of such concepts have own requirement-specific 
advantages and disadvantages regarding e.g. their physical behavior, lifetime or efficiency [2]. 
To objectively evaluate those concepts for specific requirements and to determine the most 
suitable one, the behavior of each individual concept must be modeled and simulated in a 
virtual environment. Modeling e.g. the physical behavior of just one single electrotechnical 
drivetrain concept, e.g. in Simulink® [3], already requires an enormous amount of manual 
modeling effort, time and cost. To model and simulate the physical behavior of hundreds of 
possible concepts, the modeling effort must be significantly reduced.  

Two approaches can be used to reduce manual modelling efforts: First, the reuse of 
simulation models and second, an efficient integration strategy for simulation models. 

By combining reused scope-specific (e.g. Asynchronous Motor, Lithium-Ion-Battery) and 
purpose-specific (e.g. functional-physical behavior, heat dissipation) simulation models, 
various drivetrain concepts can be created and simulated for required simulation results (resp. 
purposes) [4]. For each technical solution a variety of different simulation models exist 
regarding their purpose and scope as well as their input- and output parameters. Models for 
physical behavior simulation of technical solutions used in electromechanical drivetrains can 
be created in the tool Simulink®, e.g. using Simscape® Blocks. According to [5] Simulink® is 
currently the most suitable tool for the physical behavior simulation of electromechanical 
drivetrains. Simulink® models can be stored within a customized Block Library, reused and 
manually integrated into a drivetrain concepts physical behavior simulation model. If all models 
are available for a specific concept and simulation result, this approach of model reuse and 
integration can already reduce manual modelling efforts by a lot. For large solution spaces, the 
manual and still very time-consuming scope- and purpose-specific integration remains. 

Exactly for this case the Model-Based Systems Engineering (MBSE) tool System Composer 
from MathWorks® offers an efficient model integration opportunity using Variant Components  
[6]. Thus, only one single variable model network containing various Simulink® models for all 
possible scopes and purposes needs to be created manually. This model network can be 
configured and run concept- and purpose-specifically by a minimum of effort or theoretically 
even fully automated. 

For the configuration, however, suitable models must first be identified for a specific concept 
and a specific purpose. The large number of possible model combinations (e.g. for just ten 
possible concepts, each consisting of five technical solutions, each solution with four reused 
simulation models, already 10.240 model combinations can be configured) and their 
compatibility check (Is the required simulation purpose fulfilled? Do the model scopes match 
the required concept? Do the model interfaces and input and output parameter match?) make 
this still a complex and time-consuming task. Another challenge is that the implementation of 
model networks in System Composer currently lacks a standardization for the reuse of models 
(e.g. regarding model hierarchy, structuring and interfaces) to enable automatic configuration 
and execution of the identified models. Today, reused simulation models often must be 
modified manually before the model network can be configured and run within the System 
Composer. 



 

3 
 

In summary, although the manual modelling effort can already be reduced today, there is 
still a lack of a method to automatically identify suitable models in a model network for a specific 
concept and purpose, and a lack of standardization for modelling a network so that it can be 
automatically configured to run the identified and reused simulation models. 

Therefore, the research aim of this paper is to develop a method to automatically identify, 
configure and execute suitable and reusable simulation models for a required concept and 
purpose in a model network consisting of reusable simulation models. This will enable the 
simulative evaluation of large solution spaces in electromechanical drivetrain development. 

To achieve this goal, first the current state of research is discussed, and research questions 
are formulated. The developed method is then presented and validated using 
electromechanical drivetrain concepts of a passenger car and the physical behavior simulation 
for different purposes (e.g. just physical behavior, or additional efficiency estimation, or heat 
dissipation). The implementation is carried out in MATLAB®, Simulink® and the System 
Composer. A summary and conclusion of the results follows. 

2. State of Research 

To automatically identify and execute suitable simulation models for a required concept and 
purpose in a model network consisting of reusable simulation models, following two methods 
are needed. In this chapter we will discuss the current state of research regarding those two 
areas of methodology. 

1. A standardization method to create a model network with reusable simulation 
models so that it can be configured automatically to run identified simulation models. 

A number of MBSE modelling standardization methods, based on the Systems Modelling 
Language (SysML) address the development of CPS, e.g. SYSMOD [7], SPES [8], mecPro [9] 
and FAS4M [10]. All those modelling methods have in common, that electromechanical 
drivetrain concepts can be implemented and theoretically be linked to physical behavior 
simulation models. What these methods don´t cover is simulation model network 
standardization regarding its configuration or model reuse. The motego method [4], another 
SysML modelling standardization method, is focused on the seamless implementation and 
evaluation of electromechanical systems in a model-based and functional oriented manner. 
The approach offers a SysML-based standardization for model network implementation 
regarding its efficient configuration [11] and model reuse [4]. According to [4] and [11] model 
networks can be structured following functional architectures, concepts, their technical 
solutions and all their possible variations. Basic time-independent physical behavior models 
can be integrated into these solutions and parametrically combined via function-oriented 
interfaces (e.g. rotational mechanical energy) so that they can be simulated combined for the 
overall concept. The function-oriented structure allows efficient reuse of the individual 
simulation models. For each technical solution, all possible simulation models are implemented 
according to their formalized classification for scope and purpose [4]. In [11], this 
standardization is used to build a model network with reusable models, which can be 
configured efficiently, but still manually, to simulate different concepts. This approach is 
specifically developed for SysML model network standardization. Model network 
implementation according to the motego method can be carried out in e.g. CATIA Magic [12], 
a specific system modelling tool. The integration and simulation of time-dependent physical 
behavior simulation model is possible, but not efficient enough to compared with software tools 
such as Simulink®. In [13] a mechanism for the variable implementation of models in Simulink 
is presented, which is used for automatic code generation. In [14] an approach for the 
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implementation of component variants in Simulink was developed. Both approaches are 
inadequate for the configuration of model networks. 

Current standardization methods for model networks do not yet allow automated 
configuration of reusable and sufficiently accurate models to simulate physical behavior. This 
represents the first research gap. 

2. A method to automatically identify suitable simulation models in a model network for 
a specific concept and purpose. 

Partially or even fully automated model identification methods are already presented in a 
few papers. Here the most relevant methods regarding a fully automated identification of 
suitable simulation models in a model network for a specific concept and purpose are 
discussed. In [15] a method for the automated selection of physical behavior models for 
functional architectures is presented for Modelica®. The method is based on the flows between 
functional blocks (e.g. rotational mechanical energy or electrical energy). The identification 
criteria are identical functional flows. However, with this method a model identification for a 
specific concept and simulation purpose is not supported. Furthermore, in comparison to 
Simulink®, only standardized bidirectional interfaces are used in Modelica®. This makes a 
compatibility check of two connected models obsolete. [16] developed a methodology to 
efficiently explore and evaluate possible concepts for hybrid electromechanical drivetrains 
based on the VEHLIB library [17] in Simulink®. However, for the simulation and evaluation of 
a specific concept and simulation purpose, suitable models must be selected and implemented 
manually. As part of the Montego method in [4] an approach for the usage of model signatures 
[18] is presented. A model signature contains the model input parameters, output parameters 
and internal parameters. Together with the model classification, model signatures can be used 
to analyze its suitability for a specific scope and purpose as well as it´s compatibility regarding 
available parameters. In [19] an approach for automated simulation model identification in a 
model network regarding their compatibility is presented. The method is based on the 
formalized model classification and signatures in SysML. However, the method does not 
consider any concept or purpose-specific identification. For possible variations, individual 
model networks must be implemented manually. 

For model networks, there are not yet sufficient methods of automated model identification 
for specific concepts and purposes. This represents the second research gap. 

3. Research Gaps and Questions 

To enable concept evaluation based on physical behavior simulation for large solution 
spaces in electromechanical drivetrain development, manual modelling efforts must be 
reduced. Therefore, software tools such as the MATLAB® System Composer can potentially 
be used to create just one single variant network of reusable models that can be configured 
for concept and purpose-specific simulation and evaluation. However, suitable models 
currently still must be selected manually. This requires not only the identification of concept 
and purpose specific models, but also checking their compatibility. Due to the large number of 
possible model combinations resulting from the combinatorics of the variant network, this can 
be a very time-consuming task. According to the current state of the art, there is no sufficient 
method that can enable automated model identification and configuration for such model 
networks. For an automated configuration of the model network for the previously identified 
models, the current state of the art as well lacks a suitable standardization methodology of 
simulation models and their interfaces. This can lead to serious comparability problems, 
especially in the context of long-term model reusability. This research gap for automated model 
identification and configuration and its potential for MBSE was also identified and described in 
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[20]. The aim of this paper is therefore to develop a method to automatically identify, configure 
and run suitable and reusable simulation models for a specific concept and purpose in a model 
network. To achieve this goal, the following research questions are proposed: 

1. How must the model network be standardized so that it can be configured automatically to 
run identified simulation models? 

2. How can suitable simulation models be identified automatically in a model network for a 
specific required concept and simulation purpose? 

The method is presented in Chapter 4 and validated in Chapter 5 using the exemplary 
concept development of the electromechanical drivetrain of a passenger car. MATLAB®, 
System Composer and Simulink® are used for the implementation of the methodology. A 
conclusion follows in Chapter 6. 

4. Methodology 

The method presented is divided into two subchapters. The first subchapter (Chapter 4.1) 
addresses the standardization of variable model networks to enable their automated 
configuration for individual simulation model combinations covering multiple concepts and 
simulation purposes. The second subchapter (Chapter 4.2) describes an approach for the 
automated identification and configuration of suitable simulation models for an individual 
concept and simulation purpose.  

4.1. Model Network Standardization 

Automated model network configuration to run identified models requires standardization of 
simulation model variations, ports, parameter naming, computer-readable model signatures, 
and model integration into the network. The standardization method is illustrated in Figure 1. 

 
Figure 1: Model Network Standardization 

We need to create model variations in the model network to enable its configuration. 
Therefore, a standardization for all variation opportunities (e.g. to configure the network to 
simulate different concepts behavior, or to run it regarding different simulation purposes) is 
needed. Variant simulation models can be implemented and nested in System Composer 
using Variant Components. We consider model variations in multiple hierarchical layers in the 
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network to enable the best possible reusability and configurability. Therefore, a first Variant 
Component in the highest layer – the function – contains variant technical solutions. For the 
function Energy Storage this can be a Battery or a Capacitator (see Figure 1). Within these 
technical solutions a second Variant Component is used to nest all its Simulink® simulation 
models. These can differ in terms of purpose or input-output-combinations (e.g. physical 
behavior or with additional lifetime estimation or heat dissipation) (see Figure 1). 

Figure 1 shows the simulation model 2 of the battery. This model is implemented as a 
custom Simscape Block with a temperature estimation based on the heat generation from the 
battery efficiency and the specific heat capacity of its cells. The model uses a DC electrical 
Simscape connection and a Simulink output for the temperature. Other models are also 
implemented as custom Simscape Blocks, such as Battery Model 3, Capacitor Model 2 or 
Capacitor Model 3. For models that only have Simulink connections, the model is implemented 
as a simple calculation with Simulink Blocks. For example, model 2 of the DCDC converter 
contains simple gain blocks to decrease the voltage value and increase the current value. 

A standardization of the simulation model interfaces and ports is needed. All simulation 
models nested in a Variant Component need identical interfaces and ports. Regarding the 
hierarchical structure the functional layer specifies this standardization for all lower-level 
simulation models. In addition, all functions and models must use the same interfaces and 
ports so that they can be connected. These functional interfaces must be created for possible 
Simulink® (bidirectional) as well as for Simscape® models. In CPS each function, technical 
solution and model can interact with the system and the surrounding environment in terms of 
energy flows, material flows, and control signal flows. For each function, possible interactions 
are limited. For example, a battery supplies DC electrical energy and may interact thermally 
with the environment or with energy management system. It is typically the case that a battery 
will not engage in any material interactions of functional significance. Consequently, the battery 
is equipped with ports for both DC electrical and thermal energy flows (see Figure 1). Since 
material and energy flows are conserved, Simscape® connections can also be used by models 
in addition to Simulink® directional ports. Figure 1 shows a functional block of Electrical Energy 
Storage function with a Battery and Capacitor as alternate effects. Each functional block is 
given a Control Signal Simulink® input port because some models may have state dependent 
or control signal dependent behavior. The input port for control signals has always a directional 
Simulink® type because control signals do not have conservative and bidirectional nature as 
energy or material. Lastly, a performance output port is included for state signals which are 
used for the feedback loop with the control system. CPS such as hybrid drivetrains included 
feedback-based control software for functional and safety performance of the system. In 
addition to the feedback loop, the elements of this ports also provide purpose-specific 
information of the model which would later be used to identify suitable models. Purpose-
specific signal outputs for requirement validation is a common practice according to [21]. 

Table 1: Example of naming structure of inputs and outputs of the simulation models 

Component Quantity Name SI Dimension Scope Dependencies 

Battery 

Temperature Q Battery Time 

Temperature Q Anode Time_xyz 

Voltage I_1L2MT_3 Battery Temperature_Time 

DC Converter Heat L2MT_2 DCDC Converter Time 

Motor BLDC Torque L2M2T_2 Motor1 Time 

… … … … … 

 
For the suitable connection of model parameter inputs and outputs, their naming must be 

the same. Therefore, a standardized parameter naming is necessary. Within this approach the 
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following standard naming structure is used: 
QuantityName_SIDimension_Scope_Dependancies. The quantity name serves to identify the 
state variable or the performance metric. This enables the requirement-specific model 
selection. Next part of the naming convention is the SI dimension and scope. The last part are 
dependencies which give information about the fidelity of the output such as time dependency, 
or a spatial resolution (indicated by “xyz”) is present. The naming structure of elements also 
serves the automated identification, later. Some examples of the naming are listed in Table 1. 

Because the compatibility and the model configuration depends on the specific parameter 
inputs and output combination, model signatures are generated. Model signatures are formal 
description of parameter inputs and outputs of the model. Thus, model signatures can be useful 
in evaluating the compatibility of models. A script is developed which generates tabular model 
signature in terms of port names, designated positions (input, output, Simscape® ports), 
special structured name, and unit. This information is stored in tables which are utilized later 
in the filtering and compatibility of model identification. An exemplary, automatically generated 
model signature is shown in Figure 1 for Battery model 2. 

Multiple Functions can now be referenced and connected in a functional architecture of an 
electromechanical drivetrain within the System Composer. This functional architecture 
represents our model network. With the described standardization for model networks, the 
overall concept can be configured by manually selecting a technical concept for each function. 
This can be achieved by making a particular technical solution active. Afterwards, the 
simulation models for each active technical solution can also be configured by making it active. 
The model network configured in this way for a specific concept and a specific purpose can be 
parameterized, executed and simulated immediately. The configuration can be done manually 
or automated within a MATLAB® script. 

4.2. Automated Model Identification and Configuration 

In this subchapter an approach to enable the automated identification and configuration of 
suitable models in a model network for a specific concept and with a specific purpose is 
presented. The model identification approach consists of three steps, the User Input for the 
required concept and purpose, the Model Filter, to filter out all not suitable models regarding 
their scope and purpose and the Compatibility Check, where remaining and functionally 
connected models are checked for their parameter input output compatibility. In the additional 
forth step Configure and Run Simulation the model network is configurated and run 
automatically according to the identified models. In Figure 2 an overview of the process is 
given. The presented method is implemented in MATLAB®. 

For the configuration of a specific concept and purpose, a user input is needed. The user 
input is based on a MATLAB® list, containing all required technical solutions of the concept 
(resp. model scopes) together with the required simulation purpose of each solutions model.  
Figure 3 illustrates two exemplary user input sets. In one case, a Brushed DC Motor, in the 
second case, a Brushless DC Motor, should be used in the concept. Additionally, to the 
physical behavior in the first set the battery temperature should be simulated, in the second 
case the lifetime. The user inputs are implemented with a similar naming structure as described 
for the naming convention of signals. Requirements can be implemented in the MATLAB® 
Requirements Manager and used as input also. Natural language requirement can even be 
formalized for such a naming standardization automatically according to [22]. 

In the second step, the architecture of the model network is read out. This results in a 
MATLAB® table containing all functions of the functional architecture, each technical solution 
and all possible simulation models. The formalized signatures are called based on the 
simulation model names. The model scope and model purpose are then compared with those 
of the user input. The usuitable models, that do not fulfill the required model scopes and 
purposes are deleted from the previously created table and relevant model is identified (see 
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Figure 2) e.g From user input, battery scope input eliminates capacitor and temperature 
purpose input filters model 1 in battery as relevant model. The temperature purpose input is 
compared with all model signatures of battery technical concept till relevant model is identified. 
This model filter can significantly reduce the amount of possible model combinations and 
therefore reduce the computational time of the implemented algorithm. 

 
Figure 2: Steps in Identification of purpose-specific and compatible model identification 

In the third step, the input-output-parameter compatibility is checked. Compatibility is 
necessary to ensure the executability of the identified models. For example, the simulation 
model of the battery may have voltage as a Simulink® output and current as input, but the 
connected converter model has a bidirectional electric Simscape® connection. The 
Compatibility Check is shown as step 3 in Figure 2. In step 2, models are already identified in 
one (Figure 2 Battery Model 1) or more technical concepts (see Figure 3 Output Set 2 where 
battery and motor models are identified in step 2). From identified models (Energy Etorage in 
Figure 2), the models of adjacent functional blocks (Energy Level Change in Figure 2) are 
identified. By comparing the model ports and formalized signal name in the model signatures, 
compatibility can be checked. For example, input/output ports and formalized signal names of 
all model signatures of DCDC Converter technical solution are compared with those of battery 
model 1. Once model signatures match, the corresponding model is identified e.g Model 2 in 
DCDC Converter. The process ends when a compatible model has been identified for each 
technical solution in entire architecture. The result is the identification of models that are 
suitable for the simulation of the required concept and the required simulation purpose. 

 Once the simulation models have been identified, the model network is configured 
automatically in step four by making these models active in the model network using software 
code. Lastly, the simulation is executed. 

This approach and based on subchapter 4.1 suitable models can be automatically identified, 
configurated and run in a model network for a specific concept and with a specific purpose. 
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For the validation of the methodology two sets of user inputs were used (see Figure 3). In 
set one, e.g. a brushed motor and a battery are selected, both for the simulation of their 
physical behavior. In addition, the batteries lifetime must be calculated. In the second set a 
brushless DC motor is selected together with the battery and DCDC Converter. In this case 
the batteries temperature must be simulated additionally. In both cases, suitable models of the 
model network shown in Figure 3 can be automatically identified, configured and executed. 
The simulation results generated in this way are also shown in Figure 3. For the validation, a 
model network consisting of 28 simulation models were created. 

 
Figure 3: Validation of the Method 
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methodologies and two separate sets of user inputs for required concepts and purposes for a 
specific electromechanical drivetrain an automated model identification, configuration and 
simulation was performed. 

Applied in practice, the method can be used to implement a reusable model library for the 
simulation of physical behavior for electromechanical drivetrains. The library can be used to 
generate a model network that can be automatically configured for individual concepts and 
purposes. The method thus enables simple and fast exploration of technical solution spaces 
with objective evaluation based on simulation results. 
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