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Abstract 

Multi-material topology optimization (MMTO) offers lightweight 
design potential compared to single-material topology 
optimization (SMTO). For integrating restrictions of 
manufacturing processes into a MMTO ordered SIMP model, a 
mapping scheme is used to assign them only to the relevant 
material sections. By filtering and projection of the design 
variables, manufacturing constraints are implemented without 
considerable increase in optimization effort. Optimization results 
are compared by objective function values, convergence and 
effects of manufacturing constraints. The improved 
manufacturability of the optimization results can be achieved with 
only slight reduction in the objective function value, which is due 
to the restriction of the design space introduced by manufacturing 
constraints. 
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Motivation 

Topology optimization (TO) is a simulative tool that aims to find an optimal material 
distribution to achieve one or more optimization goals. Common objectives are the 
minimization of mass or compliance, usually taking into account part functionality in terms of 
strength [1]. The most widespread method is SMTO, which uses one material that can be 
distributed in the available design space to solve the material distribution problem. The Solid 
Isotropic Material with Penalization (SIMP) approach [2] is often used for optimization. It favors 
a clear distribution of solid material and voids by penalizing the formation of intermediate 
densities. The use of a single material limits the solution space right from the beginning and 
does not allow the use of multi-material designs that are already common today [3]. MMTO 
methods already exist on an academic scale and can be advantageous compared to SMTO if 
strength and cost constraints are considered in the optimization [4, 5]. For example, materials 
with a poor stiffness-to-density ratio (E/ρ) and a higher cost-to-density ratio can be preferably 
arranged in the design space when using an MMTO algorithm [5]. To improve the direct 
applicability of MMTO optimization results, it is necessary to consider manufacturing 
restrictions already during the optimization in order to minimize the rework required on the 
optimization results and to avoid the resulting deterioration of the objective function value. 

State of research on multi-material optimization with manufacturing constraints 

Based on the homogenization method presented in [6], the following approaches to solving 
the material distribution problem in the SMTO have been developed: density, level set, 
topological derivative, phase field, evolutionary and other approaches [7]. There are density-
based and level set approaches for MMTO [8]. Density-based MMTO methods can be 
differentiated according to their number of design variables. The element stacking method [9] 
and discrete material optimization [10] use one design variable per element and material. The 
ordered SIMP model [5] only uses one design variable per element that is taken into 
consideration for determining the material of an element. For this purpose, the SMTO SIMP 
method is set up for several density ranges, whereby the densities of the materials are 
normalized and sorted in ascending order. The advantage of this approach is the easy 
integrability into existing academic SMTO optimization algorithms as well as the comparably 
low number of design variables [5]. On the downside, the appearance of checkerboard patterns 
at the interface between different material phases is to mention [5]. Additionally, elements can 
assume different materials during the optimization process, which complicates the integration 
of material-specific manufacturing restrictions. 

If the design variables are used exclusively to determine the optimal design, not 
manufacturable results can be generated. To avoid this, the geometry of the resulting 
structures can be influenced during the optimization process by the following methods. A 
common technique is the use of filter functions for the introduction of restrictions in SMTO 
optimization [11]. Heaviside functions can be used to minimize intermediate densities in the 
optimization results and to integrate manufacturing restrictions [11, 12]. An alternative 
projection method are Q-norm projections, which make use of the maximum and minimum 
operators in the continuous form [13]. Constraints are used in the optimization formulation for 
a direct restriction of the parameter space of an optimization [14]. Other methods exist such 
as the geometry projection method, which only allows structures with a specific, fixed geometry 
to be used in the TO results [15]. 

Filters are used for manipulating the design variables such that they are mapped onto 
element space by creating combinations of the input values [16]. All morphological filters have 
neighborhood sets Ne that contain members of the design variables Φ for calculating the filtered 
element density of the current element μe. The design variables in a neighborhood set are 
determined by using the distance between their coordinates xi and those of the element under 
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consideration xe. Possible forms of the neighborhood set are radial [11], linear or a combination 
of both [17] known as unidirectional neighborhood set. The values of the design variables Φi 
within a neighborhood set are weighted using weighting functions w(xi,xe) and result in the 
filtered density value of the element under consideration according to equation 1. Depending 
on the desired influence of the design variables in the neighborhood set, linear [12], cone-
shaped [11], uniform or shift-inverse weighting functions [17] can be used. 

 μe(Φ) =
∑ w(xi,xe)Φii∈Ne

∑ w(xi,xe)i∈Ne
 1 

To avoid intermediate densities, the Heaviside Projection Method [12] is used to convert a 
continuous into a discrete design variable field. The continuously differentiable approximation 
of the Heaviside function in equation 2 is used as the projection function in order to enable the 
use of gradient-based optimization methods such as the method of moving asymptotes (MMA) 
[18]. The slope of the Heaviside function is changed using the projection parameter β. μe(Φ) 
are the filtered design variable values of the element and μmax is the maximum filtered design 
variable value, that is usually equal to the maximum design variable value Φmax. 

 ρs
e = H(μe(Φ)) = �

1 für μe(Φ)>0
0 für μe(Φ)=0�=1-e-β μe(Φ) +

 μe(Φ)
μmax

e-βμmax 2 

In a filter operation, all design variables of a neighborhood set have an influence on the 
element under consideration. Through a subsequent projection, each member of the 
neighborhood set has the potential to set the element density of the element under 
consideration to zero or one. A solid projection function applies a restriction to the solid phase 
of the SIMP approach, whereas a void projection function restricts the elements of the void 
phase by modifying equation 2 to ρv

e  = 1 - H(μe(Φ)) [16]. In case of the solid projection function, 
the element density of the element under consideration is one as soon as at least one design 
variable in the neighborhood set is greater than zero. This property makes combined filtering 
and projection steps suitable for integrating manufacturing restrictions into topology 
optimization. [11] 

Although topology optimization results represent an optimal result with regard to the 
objective function value, the manufacturability of the designs is not taken into consideration. 
For injection molding, a uniform wall thickness with resulting uniform shrinkage behavior and 
thus little warpage is advantageous regarding manufacturability [3]. For extruded components, 
a uniform cross-section in the length direction is required [13]. Milling processes require 
consideration of the tool body in the topology of a component. For millability, each FEM 
element removed by milling must have a connection in the milling direction to the edge of the 
component and the connection must not intersect the component [19]. Furthermore, the 
minimum diameters and radii as well as the maximum permissible curvatures of voids should 
be adapted to the milling tool [17]. For parts manufactured by turning, a connection between 
the holes inside the component and the outer edge is required to avoid inclusions and cross-
sections have to be axially symmetrical [13]. 

The generation of uniform and axisymmetric cross-sections can be implemented in the TO 
using a mapping method [13]. As a constraint not specifically tailored to a manufacturing 
process, the minimum length scale can be used for improving TO results for several 
manufacturing processes. The integration in the optimization algorithm can be realized by 
using Heaviside functions [16] or Q-norm projections [13]. Symmetry restrictions as well as 
extrusion restrictions are implemented by using Q-norm projections [13]. The milling restriction 
is applied differently depending on the used optimization algorithm. In a density-based TO, a 
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restriction of the voids is used for the implementation [17]. The avoidance of void inclusions, 
which is universally applicable for manufacturing processes, can be implemented using the 
virtual temperature method [20]. In [21], additional constraints in the optimization algorithm are 
used for the implementation of non-manufacturing-specific design rules in the ordered SIMP 
model. The disadvantage of this method is the poorer convergence behavior of the optimization 
algorithm. 

Research question 

MMTO algorithms offer additional lightweight design potential compared to SMTO 
algorithms. However, this can only be fully utilized if the resulting designs also meet 
manufacturability requirements. By integrating manufacturing constraints into topology 
optimization, development loops in the product development process can be eliminated which 
results in a reduction in development time [1]. Restrictions tailored to specific manufacturing 
processes are already taken into account in the SMTO, but not yet in the MMTO. The aim of 
this paper is therefore the integration of manufacturing constraints into multi-material topology 
optimization. For this purpose, the following issues and their effects on optimization must be 
investigated and resolved: 

 How can the manufacturing constraints be assigned only to the corresponding material 
density section? 

 Can the combination of several manufacturing constraints on one material density 
section be achieved by using nonlinear weighting functions? 

Used methods and procedures 

The ordered SIMP model according to [5] is chosen as the basis for the MMTO and the 
MMA according to [18] is used as the optimization algorithm. The design variables are located 
in the element centers, although their position could also be chosen to be at the node 
coordinates. To include the manufacturing restrictions in the topology optimization algorithm, 
a filtering and projection of the design variables takes place in each iteration. This restricts the 
permissible design space right from the beginning to more advantageous optimization results 
in terms of manufacturability. The process for transforming the design variables to the element 
densities is shown in Figure 1. A manufacturing restriction has exactly one filter and one 
projection function. 

 
Figure 1: Additional steps in the MMTO optimization algorithm for the integration of manufacturing constraints. 

The first step is the assignment of a discrete material to each element that is unchanged 
during an iteration. This is done by evaluating the density region and thus material in which the 
design variable of the corresponding element in terms of spatial position is located. A mapping 
of all elements of the same material to an SMTO SIMP method is used to ensure that the 
material assignment of the elements remains the same before and after the application of the 

Reverse 
Mapping

Material 
determination FilteringMapping Weighting Projection

Design 
variables

Element 
densities



 

5 
 

manufacturing restrictions, as shown in Figure 2 b). Depending on the phase that should be 
restricted by the manufacturing constraint, either a solid projection function for the upper phase 
or a void projection function for the lower phase is used in the constraint formulation. A material 
located in the center of the ordered SIMP model can be reached from both the upper and lower 
material sections and is referred to as the duality of the ordered SIMP model in the following. 
To apply a manufacturing constraint to a material in the middle of the ordered SIMP model, 
restrictions have to be used for both material sections around the material of interest. 

 
Figure 2: Mapping of a) the ordered SIMP model with three materials to a b) SMTO SIMP method. 

The method presented in [22] is used to include several manufacturing constraints for a 
material section by filtering the design variables with nonlinear weighting functions. If there 
is just one manufacturing restriction defined for a material, a linear weighting function is used 
instead of the nonlinear one. The design variables of the elements belonging to other materials 
are not included in the filtering and the subsequent projection step. After all filter and 
projection functions of all manufacturing restrictions have been applied, they are reintegrated 
into the MMTO ordered SIMP model by means of a reverse mapping step. After the 
reintegration, all elements still have the same material as before the mapping, but may have 
different element densities than the design variables located in the element centers. The 
modification of the element densities changes the sensitivity of the objective function and the 
constraint functions with respect to the design variables. For obtaining the modified 
sensitivities, the correction is made by multiplication with the terms resulting from the chain 
rule. 

After the convergence of the optimization algorithm, an interpretation of the optimized 
element densities is required due to the occurrence of intermediate densities in the TO results. 
To achieve the interpretation, the SIMP curves of the ordered SIMP model are divided in the 
middle of each material section which leads to a clear material definition for each element. 

The minimum length scale uses a filter with radial neighborhood set and cone-shaped 
weighting function. The combination of several manufacturing restrictions on one material is 
required either by the duality of the ordered SIMP model or several manufacturing restrictions 
for one material. This can be achieved with the approach presented in [22] by using nonlinear 
weighting functions. 

The milling restriction applies a filter with the unidirectional neighborhood set and the shift-
inverse weighting function to the design variables in order to obtain the element densities [17]. 
Due to the local definition of the manufacturing constraints to a material, no elements with a 
different material are included during the filtering of the design variables. Although this ensures 
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the belonging of an element to the same material throughout an iteration, the influence of 
elements with other materials on the manufacturing constraint is neglected. 

The integration of the minimum length scale and the milling restriction into the ordered SIMP 
model is investigated using a 2D Messerschmitt-Bölkow-Blohm (MBB) beam with the 
dimensions 120x40 mm. It has a load application point at the lower right corner with a force of 
500 N acting in direction of the negative y-axis and a fixed support on the opposite edge, as 
shown in Figure 3 a). The meshing in ANSYS WORKBENCH 2023 R2 is done with Solid 185 
elements with 1 mm edge length and linear shape functions, which generates a regular mesh 
with 4800 elements, 9922 nodes and 29766 degrees of freedom. The MBB has only one 
element layer in thickness direction in order to be able to calculate 2D examples with the 3D 
implementation of the ordered SIMP model in MATLAB® R2023B. The material models shown 
in Figure 3 b) are used for the optimization. 

 
Figure 3: MBB with fixed support on the left side with a force of 500 N acting upon the bottom right corner; b) 

material properties of aluminum and polypropylene (PP). 

To create the ability of using more than one constraint on a material section of the ordered 
SIMP model, nonlinear weighting functions with the parameters αs=0.0002 and αv=0.0005 are 
used. The initial element density is set to 0.3 as well as the target volume fraction for the SMTO 
and MMTO optimizations. The initial penalty factor of two is increased up to a maximum penalty 
factor of five. The maximum number of iterations is 500. An increment of 50 iterations is used 
to increase the continuous parameters. The minimum allowable change in density is 0.0004. 
The minimum element density is set to 10-6, while the maximum design variable value is one. 
The initial projection parameter starts at one and is increased up to a maximum projection 
parameter of 50. The filter radius is 2.5 mm. 

Results and discussion 

The optimization results of the 2D demonstrator are compared based on the objective 
function value, its convergence and the interpreted relative mass fractions. For their 
computation, the mass of the optimized structure is set in relation to the mass of the total 
design space filled with aluminum. The resulting component designs are also assessed with 
regard to the effects of the manufacturing restrictions. An overview of the results obtained with 
the investigated demonstrator configurations is listed in Table 1. 

Table 1: Overview of the results obtained with the 2D MBB. 

Optimization Manufacturing constraint Objective function 
value in mJ 

Interpreted relative mass fraction 
in % 

SMTO none 1856.55 32.33 

MMTO none 2208.23 30.17 

SMTO Milling restriction 21043.74 29.85 

500 N

y

z x

40

120

a) b)

Material 
properties Aluminum PP

E in MPa 70000 3600
ρ in g/cm3 2.7 0.92
G in MPa 26923 1385

ν 0.3 0.3
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MMTO Minimum length scale 2748.06 29.94 

MMTO Milling restriction 4037.58 34.87 

MMTO Combined 2931.01 30.21 

 
In Figure 4 a), an SMTO with aluminum and without manufacturing constraints is depicted. 

In comparison with the resembling MMTO result with aluminum and PP in Figure 4 b), both 
optimizations produce structures with thin struts and local checkerboard patterns. Those 
undesired patterns are optimization results which are difficult to manufacture or have to be 
interpreted manually. They are a result of the slight reinforcing effect of the elements 
possessing the minimum element density, which serve as a bridge between the elements with 
solid material. The objective function value of the SMTO is lower than that of the MMTO, 
because no restrictions on component strength and costs are considered in the optimization 
[5]. 

 
Figure 4: Material distribution of a) SMTO and b) MMTO without manufacturing restrictions. 

The MMTO result with minimum length scale on aluminum, PP and void in Figure 5 a) does 
not contain a checkerboard pattern. The strut thicknesses fulfill the minimum length scale, that 
is depicted as reference in the figure. The aluminum struts at the edge of the design space are 
only half the thickness of the minimum length scale, since fewer design variables are in the 
vicinity of the edge elements. Therefore, the number of design variables in the neighborhood 
sets of the edge elements is less than of fully surrounded elements in the design space. 

 
Figure 5: Material distribution of a MMTO with a) minimum length scale on aluminum, PP and void and b) a milling 

restriction on aluminum. 

For the milling restriction on aluminum shown in Figure 5 b), all elements with aluminum as 
material should have a connection with elements of the same material to the left side of the 
design space. The restriction leads to a thickening of the aluminum struts compared to the 
result with the minimum length scale in Figure 5 a). Individual aluminum elements are created 
around the load application point due to the lack of consideration of elements of other material 
sections in the milling restriction. As no manufacturing restriction is applied to the PP structure, 
checkerboard patterns are not prevented and appear in the optimization results. 

y
z x
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Figure 6: Material distribution of a) a SMTO and b) a MMTO with milling restriction on aluminum and minimum 

length scale on PP. 

The use of a milling restriction for the SMTO with a maximum projection parameter of 200, 
a maximum penalty factor of 10 and an increment for increasing the continuous parameters of 
25 leads to the optimization result depicted in Figure 6 a). Due to the large void region in the 
upper part of the design space, the part is millable in the direction of the red arrow. The 
objective function has the highest value in comparison to all other tested configurations due to 
the low exploitation of the lightweight potential of the TO. An improved behaviour is observed 
by using a MMTO with a milling constraint on aluminum and a minimum length scale on PP, 
as shown in Figure 6 b), which produces a manufacturable result with a better objective 
function value. Compared to the nonrestricted MMTO in Figure 4 b), the objective function 
value is 33 % higher with a slightly higher relative mass fraction. The optimization result thus 
leads to improved component manufacturability without the necessity of reworking by product 
developers, which would lead to an unpredictable change in the objective function value. 

 
Figure 7: Convergence history of the optimization results shown in Figure 4 to Figure 6 without Figure 6 a). 

The convergence history of the optimization with and without manufacturing constraints in 
Figure 7 shows a deterioration of the objective function value due to the implementation of 
manufacturing constraints in the TO. When a minimum length scale is applied to all phases of 
the MMTO, the change of the design variables from iteration 250 onwards is more restricted 
than in the nonrestricted optimization, which is noticeable in an increased objective function 
value. Only the optimization with the milling restriction on aluminum ends before reaching the 
maximum number of iterations and shows an oscillating convergence behavior at the end due 
to the change of elements between different material sections. A combination of the milling 
restriction and the minimum length scale converges after 350 iterations, but continuous until 
the maximum number of iterations is reached. The objective function value for the two 

y
z x

a) b)Length scale AluminiumVoid PP
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optimizations with minimum length scale increases at the beginning of the optimization. 
Because of the modification of the design variables by filtering and projection, element 
densities increase. This also affects the mass constraint such that the volume fraction is 
exceeded. Until the mass constraint is satisfied, the optimization algorithm scales the design 
variables without modifying the density distribution, which leads to an increase in the objective 
function value. The same effect is observed at the iteration points when increasing the penalty 
factor and the projection parameter. Adding more manufacturing constraints to the MMTO 
leads to an increase in the number of iterations needed to compensate for the parameter 
increases. The SMTO has a higher sensitivity to the increase in the penalty factor than the 
MMTO due to the damping effect of the filter and projection functions on the changes in the 
design variables. The initial values of the objective function differ for the MMTO optimizations 
due to the change in element densities caused by the manufacturing constraints. In case of 
the SMTO and MMTO, the difference occurs because of the different scaling factors of the 
SMTO SIMP method and the MMTO ordered SIMP model. 

All in all, when using the implemented manufacturing constraints for the optimization, the 
speed of convergence is slightly reduced, but the optimization reaches nethertheless solutions 
with objective function values comparable to those of unconstrained MMTO optimizations. 

Conclusion and outlook 

Due to the advantageous expansion of the design space through the use of multiple 
materials, interest in MMTO optimization algorithms is rising. For a more direct usability of 
MMTO optimization results, the integration of manufacturing constraints is required. Based on 
the MMTO ordered SIMP model, this paper implements a minimum length scale and a milling 
constraint by combining filtering and projection methods. The local application of material-
specific manufacturing constraints is implemented by means of a mapping procedure. 
Nonlinear weighting functions enable the application of several manufacturing constraints to a 
material section. The investigation of the manufacturing constraints on a 2D demonstrator 
show more feasible optimization results, but also an increase in the objective function value. 
Further research is necessary with regard to the usage of elements belonging to other 
materials in the filtering as well as the investigation of the manufacturing constraints for more 
than two materials and in 3D, as shown in Figure 8. Furthermore, for a better utilization of the 
lightweight potential of MMTO designs, additional strength and cost constraints should be 
considered for the optimization. 

 
Figure 8: Investigation of the manufacturing constraints on a 3D demonstrator with a) PP and b) aluminum. 

a) b)
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